半导体物理学的载流子输运

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-05-09
请问什么叫做载流子

在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴[1])被视为载流子。金属中为电子,半导体中有两种载流子即电子和空穴。
  在电场作用下能作定向运动的带电粒子。如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。
  "载流子" 在学术文献中的解释:
  1、不论是N型半导体中的自由电子,还是P型半导体中的空穴,它们都参与导电,统称为“载流子”.“载流子”导电是半导体所特有的
  2、关于气体导电众所周知,导体之所以容易导电,是因为“导体中存在大量的可以自由移动的带电物质微粒,称为载流子.在外电场的作用下,载流子作定向运动,形成明显的电流”
  在半导体中载运电流的带电粒子——电子和空穴,又称自由载流子。在一定温度下,半导体处于热平衡状态,半导体中的导电电子浓度n0和空穴浓度p0都保持一个稳定的数值,这种处于热平衡状态下的导电电子和空穴称为热平衡载流子。
  在本征半导体中只发生热激发时,电子数目等于空穴数目,这时热平衡载流子浓度为
  
  式中m0为电子质量,kg;mn*为电子有效质量,kg; mp*为空穴有效质量,kg;k为玻耳兹曼常数,J/K;Eg为禁带宽度,eV;ni为本征载流子浓度,cm-3;T为绝对温度,K。
  对于杂质半导体,N型半导体中的电子和P型半导体中的空穴称为多数载流子(简称多子),而N型半导体中的空穴和P型半导体中的电子称为少数载流子(简称少子)。在强电离的情况下,N型半导体中多子浓度nn及少子浓度pn分别为
   P型半导体中多子浓度pp及少子浓度np分别为
   上二式中ND为施主杂质浓度,cm-3;NA为受主杂质浓度,cm-3。
  如果对半导体施加外界作用(如用光的或电的方法),破坏了热平衡条件,使半导体处于与热平衡状态相偏离的状态,则称为非平衡状态。处于非平衡状态的半导体,其载流子比平衡状态时多出来的那一部分载流子称为非平衡载流子。在N型半导体中,把非平衡电子称为非平衡多数载流子,非平衡空穴称为非平衡少数载流子。对P型半导体则相反。在半导体器件中,非平衡少数载流子往往起着重要的作用。
  载流子寿命 life time of carriers
  非平衡载流子在复合前的平均生存时间,是非平衡载流子寿命的简称。在热平衡情况下,电子和空穴的产生率等于复合率,两者的浓度维持平衡。在外界条件作用下(例如光照),将产生附加的非平衡载流子,即电子—空穴对;外界条件撤消后,由于复合率大于产生率,非平衡载流子将逐渐复合消失掉,最后回复到热平衡态。非平衡载流子浓度随时间的衰减规律一般服从exp(-t/τ)的关系,常数τ表示非平衡载流子在复合前的平均生存时间,称为非平衡载流子寿命。在半导体器件中,由于非平衡少数载流子起主导作用,因此τ常称为非平衡少数载流子寿命,简称少子寿命。τ值范围一般是10-1~103μs。复合过程大致可分为两种:电子在导带和价带之间直接跃迁,引起一对电子—空穴的消失,称为直接复合;电子—空穴对也可能通过禁带中的能级(复合中心)进行复合,称为间接复合。每种半导体的r并不是取固定值,将随化学成分和晶体结构的不同而大幅度变化,因此,寿命是一种结构灵敏参数。τ值并不总是越大越好。对于Si单晶棒和晶体管的静态特性来说,希望τ值大些。但是,对于在高频下使用的开关管,却往往需要掺杂(扩散金),以增加金杂质复合中心,降低τ值,提高开关速度。近年来,在电力电子器件生产中,常用电子束辐照代替掺金,降低τ值。在Si和GaAs材料、器件和集成电路生产过程中,τ值是必须经常检测的重要参数。

热缺陷是由于晶体中的原子(或离子)的热运动而造成的缺陷,从几何图形上看是一种点缺陷,热缺陷的数量与温度有关,温度愈高,造成缺陷的机会愈多。晶体中热缺陷有2种形态,一是肖脱基(Schotty)缺陷,2是弗仑克尔(Frenkel)缺陷。

1)肖脱基缺陷
由于热运动,晶体中阳离子及阴离子脱离平衡位置,跑到晶体表面或晶界位置上,构成一层新的界面,而产生阳离子空位及阴离子空位,不过,这些阳离子空位与阴离子空位是符合晶体化学计量比的。如:MgO晶体中,形成Mg2+和O2-空位数相等。而在TiO2中,每形成一个Ti4+离子空位,就形成两个O2-离子空位。肖脱基缺陷实际产生过程是:由于靠近表面层的离子热运动到新的晶面后产生空位,然后,内部邻近的离子再进入这个空位,这样逐步进行而造成缺陷。

2)弗仑克尔缺陷
弗仑克尔缺陷形成过程为:一种离子脱离平衡位置挤入晶体的间隙位置中去,形成所谓间隙(或称填隙)离子,而原来位置形成了阳离子或阴离子空位。这种缺陷的特点是间隙离子和空位是成对出现的。弗仑克尔缺陷除与温度有关外,与晶体本身结构也有很大关系,若晶体中间隙位置较大,则易形成弗仑克尔缺陷。如AgBr比NaCl易形成这种缺陷。

半导体的输运现象包括在电场、磁场、温度差等作用下十分广泛的载流子输运过程。和金属导体相比,半导体的载流子不仅浓度低很多,而且数量以及运动速度都可以在很广的范围内变化。因此半导体的各种输运现象具有和金属十分不同的特征。 在常见的半导体中,载流子主要是掺在半导体中的浅能级杂质提供的。主要由浅施主提供的电子导电的半导体称为N型半导体;主要由浅受主提供空穴导电的半导体称为P型半导体。由于在任何有限温度下,总有或多或少的电子从价带被热激发到导带(本征激发),所以无论N型或P型半导体中都存在一定数量的反型号的载流子,称为少数载流子,主导的载流子则称为多数载流子。温度足够高时,由价带热激发到导带的电子可以远超过杂质提供的载流子,这时参与导电的电子和空穴的数目基本相同,称为本征导电。
半导体导电一般服从欧姆定律。但是,和金属中高度简并的电子相比,半导体中载流子的无规热运动速度低很多,同时由于载流子浓度低,对相同的电流密度,漂移速度则高很多。因此,在较高的电流密度下,半导体中载流子的漂移速度可以达到与热运动速度相比,经过散射可以转化为无规热运动,使载流子的温度显著提高。这时半导体的导电偏离欧姆定律。热载流子还可以导致一些特殊效应。例如,某些半导体(如砷化镓、磷化铟)在导带底之上,还存在着能量略高而态密度很大的其他导带极小值。在足够强的电场下,热载流子会逐渐转移到这些所谓次极值的区域(指k空间),导致电场增大而漂移速度反而下降的负微分迁移率现象(见转移电子器件)。 通有电流的导体,在垂直磁场作用下,由于磁场对漂移载流子的偏转力而产生的侧向的电压,称为霍耳效应。由于在相同的电流密度下载流子的漂移速度和载流子的浓度成反比,所以,和金属相比半导体的霍耳效应十分显著,而且可以方便地用于测定载流子的浓度。霍耳效应的符号直接反映载流子电荷的符号,所以霍耳效应的测量还可以区别N型和P型导电性。
与金属中高度简并的电子不同,一般半导体中载流子的热运动显著依赖于温度,因此,半导体还表现出远强于金属导体的温差电效应(见温差发电和致冷)。
光照射在半导体内产生的电子和空穴构成多余的载流子,称为非平衡载流子。用电学方法(如通过金属-半导体接触或PN结,见下文)也可以在半导体中引入非平衡载流子。在电场作用下,非平衡载流子同时参与导电,构成附加的导电性。光照射产生的附加电导称为光电导。作为非平衡载流子的电子和空穴可以直接复合(即电子直接跃迁到价带中代表空穴的空能级),也可以通过复合中心复合,称为间接复合。非平衡载流子在复合之前平均存在的时间称为寿命,在这个时间中通过布朗运动平均移动的距离,称为扩散长度。 半导体表面的空间电荷可以看做是由于屏蔽垂直表面的电场而造成的,表面电场一般是由于各种表面的具体情况而引起的。如果电场的方向是驱赶载流子向体内,空间电荷区格外显著。这种情况下的空间电荷区是由载流子被排走所余下的电离杂质的电荷构成的,称为耗尽层。由于电离杂质电荷的浓度是固定的,随着表面电场增强,屏蔽它所需的电荷必须成正比地增大,这就意味着表面空间电荷区加宽。有控制地施加表面电场的办法是在半导体表面形成薄的绝缘层(如对半导体氧化形成薄的氧化层),在它上面做电极并加相应的电压。这种用于控制半导体表面的金属-绝缘体-半导体系统简称MIS(如果绝缘层采用氧化物,则称MOS)。
表面电场在排斥多数载流子的同时,也会吸引少数载流子,所以在MIS上加有足够大的电压时,会在半导体的极表面出现一个由少数载流子导电的薄层。它与半导体内部之间隔有空间电荷区,其中多数和少数载流子极为稀少,基本上是“耗尽”的。这种由反型载流子导电的薄层称为反型层。反型层也被称为导电沟道,以表明载流子的流动限于极狭窄的区域,如P型半导体表面的反型层称为N沟道,N型半导体表面的反型层称P沟道。当这种表面反型层很薄,其中载流子在垂直表面的方向是量子化的(从波动的观点看,是沿这个方向的驻波),载流子的自由运动只限于平行于表面的二维空间。在这种二维运动的研究中,把反型层中的载流子称为“二维电子气”。 在不同半导体之间,或半导体和金属直接连接时,它们之间的接触电势差意味着,它们的界面处是电势突变的区域,其中存在垂直于界面的电场和相应的空间电荷区。在它们之间施加电压时,电压主要降落在空间电荷区上,电压和通过空间电荷区的电流一般呈现非线性的伏安特性。
同一块半导体,由于掺杂不同,使部分区域是N型,部分区域是P型,它们的交界处的结构称为PN结。在 PN结的空间电荷区的P型一侧加正电压时(正向电压),会部分抵消接触电势差,使空间电荷区变窄,并使P区的空穴流向N区,N区的电子流向P区,这种来自多数载流子的电流随施加的电压迅速增长。加相反的电压时(反向电压),会使空间电荷区变宽,P区和N区电势差增大,这时的电流来自双方的少数载流子(N区的空穴流向P区,P区的电子流向N区),所以电流很小,而且随电压增加,很快达到饱和。 PN结两边掺杂浓度越高,接触电势差V0越大。当接触电势差增加到电子通过PN结所得到(或失去)的能量eV0超过禁带时,PN结的能带具有图10所示的情形。这时N区导带的电子可以直接穿入P区价带的空能级(空穴)。这种电子直接穿透禁带从导带的价带(或其逆过程)的现象称为隧道效应;这种高掺杂浓度的PN结称为隧道结。
半导体的表面是半导体物理研究的一个重要对象。半导体表面并不是一个简单的几何界面,而是具有自己独立特征的一个体系。在超高真空下对纯净半导体表面的研究以及理论计算都证明,在半导体表面一般存在表面电子态,处于表面电子态中的电子的运动被限制在极表面的二维空间中。另外,最表面层的原子的位置也发生典型的变化。一般表面原子层之间的间距和体内相比,发生一定的变化,称为表面弛豫。与此同时,原子在表面层中的排列的周期性和键合方式都可以发生典型的变化,统称为表面再构。再构的变化是一种相变过程,对半导体表面的物理和化学性质都有深刻的影响。 对非晶态半导体的研究只是近年来才有较大的发展。有一些非晶态的半导体属于玻璃态物质,可以由液态凝固获得,通过其他的制备工艺(如蒸发、溅射、辉光放电下淀积等)也可以制成非晶态材料。非晶态半导体的结构一般认为是由共价键结合的“无规网络”,其中每个原子与近邻的键合仍保持与晶体中大体相同的结构,但失去了在空间周期性的点阵排列。非晶态半导体与晶态半导体既有相似的特征,又有十分重要的区别。如非晶态半导体的本征吸收光谱与晶体半导体粗略相似,表明大部分的能级分布与晶体的能带相似。但是,在导带底和价带顶部都有一定数量的“带尾态”;一般认为它们是局域化的电子态。另外,连续分布在整个禁带中还有相当数目的所谓“隙态”,隙态的多少和分布都随材料和制备方法而不同。
非晶态半导体的导电具有复杂的性质,一般在较低温度是通过载流子在局域态之间的跳跃,在较高的温度则是依靠热激发到扩展态的载流子导电,但其迁移率比在晶体半导体中低很多。



  • 二维超级量子金属相变,超导材料的科学研究
    答:其实动力学平均场理论的发展及其应用,下面就一起来看看超导材料的科学研究,希望能够帮助到大家! 二维超级量子金属相变 半导体物理学的载流子输运 水的蒸汽压和相图 一般是横坐标为温度t,纵坐标为饱和蒸汽压p。 在零度以下,固液转换压力P...
  • 半导体物理学的内容简介
    答:《半导体物理学(第7版)》较全面地论述了半导体物理的基础知识。全书共13章,主要内容为:半导体的晶格结构和电子状态;杂质和缺陷能级;载流子的统计分布;载流子的散射及电导问题;非平衡载流子的产生、复合及其运动规律;pn结;...
  • 半导体物理名词解释
    答:4. 半导体类型辨识: - N/P型半导体: 通过掺杂元素赋予的电子/空穴特性,决定半导体类型。5. 载流子行为: - 简并与非简并: 费米分布或玻尔兹曼分布,定义电子行为的复杂性。6. 杂质世界: - 杂质类型: 施主/...
  • 从载流子浓度与迁移率说明室温下电导性最好的材料是谁
    答:电流载体,称载流子。在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴引)被视为载流子。
  • 半导体物理高手请进
    答:设载流子扩散流密度J=-D*d△p(x)/dx,D为扩散系数,则单位时间单位体积内载流子数为-dJ/dx=D*d^2△p(x)/dx^2,稳态分布时,单位时间单位体积由于复合而消失的载流子为△p(x)/τ,联立上面两式得扩散稳态方程:D...
  • 半导体物理,非平衡载流子问题。
    答:这里的非平衡载流子指的就是非平衡载少子。虽然半导体受激发后也会产生非平衡多子,但决定半导体性质的是非平衡载少子。非平衡少子的数目=产生率*少子寿命=10^18cm^(-3)/s^(-1)*100us = 10^14cm^(-3)这个可以从...
  • 半导体物理学(1)
    答:(4)高温本征激发区:此时本征激发的载流子数远多于杂质电离产生的载流子数。杂质浓度越高这个温度也越高。(1)低温弱电离区:(2)强电离区(饱和区)(3)过渡区 随着温度升高,n型半导体的费米能级从靠近施主杂质能级...
  • 求教半导体物理学几个基本概念
    答:半导体中有两种载流子:自由电子和空穴。在热力学温度零度和没有外界能量激发时,价电子受共价键的束缚,晶体中不存在自由运动的电子,半导体是不能导电的。但是,当半导体的温度升高(例如室温300oK)或受到光照等外界因素的影响,某些共价键中的...
  • 半导体物理学中,为什么满带不导电?
    答:电流是由载流子定向运动产生的,而载流子的速度是k(波矢)的函数,所谓的满带,是在k空间的一个布里渊区所有态上都有电子分布,而布里渊区上的电子分布又是周期性的,由于电场作用在一端的电子离开,另一端又有与刚...
  • 谁有《半导体物理学简明教程》,这个教材网盘链接求一下大家!感恩_百度...
    答:提取码:1234 本书以简明的形式介绍了半导体的基本物理现象、物理性质、物理规律和基本理论。内容包括:晶体结构与晶体结合、半导体中的电子状态、载流子的统计分布、电荷输运现象、非平衡载流子、半导体表面、PN结、金属-半导体接触...