煤层气资源评价和选区

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-01
煤层气选区评价原则与程序

煤层气地质选区评价主要考虑地质条件、资源量、供气环境及下游工程等因素;在目标评价上充分考虑构造、煤层埋深、含气量与吸附饱和度、渗透率等条件。在总结中国30多个地区1200多口煤层气井的经验和教训基础上,根据中国煤层气高产富集特点,对煤层气选区提出如下评价原则:
一、选区评价原则
(1)处于大型盆地浅部斜坡带或埋深适中的向斜区。
(2)煤层厚、分布广,煤层气远景资源量大于1000×108m3。
(3)避开城市又不远离城市,有利于环境保护和开发利用。
(4)靠近天然气输气管网,有利于下游工程建设。
(5)靠近天然气供需矛盾突出的地区,有利于开拓下游市场。
二、目标评价原则
(1)煤层埋深在200~1200m左右为最佳,避开氧化散失带和煤层低渗带。
(2)煤层总厚度大于10m,单层厚度不小于0.6m。
(3)煤层渗透率(注入/压降法)大于0.1×10-3μm2。
(4)煤层可解吸气量大,吸附饱和度大于60%。
(5)最大解吸压力接近原始地层压力。
(6)处于承压区的水压封堵气藏和高压气藏最佳。
(7)煤阶以割理发育且生气量较大的气煤—无烟煤3号为最佳(RO为0.7%~4.0%),具高渗、高吸附饱和度的低煤阶(RO为0.3%~0.6%)区也可作为有利勘探目标。
(8)煤层顶、底板有大于10m的封闭性直接盖层,目标区内煤层段无剥蚀现象,纵向上主力煤层距古剥蚀面厚度大于200m,并具有厚度大、分布稳定的区域性盖层。
在具体选区中,不同地区的影响因素不同,选区评价时考虑的条件亦有所侧重。因此,在具体应用以上各项普遍原则时,应灵活掌握,具体问题具体分析,以便更好地完成选区评价工作。
三、选区和目标评价程序
在通常情况下,煤层气地质评价工作可分为大区评价、选区评价、目标评价和区块评价4个阶段。
(一)大区评价
主要对五大聚煤区按盆地进行煤层气资源评价,分析不同盆地的煤层气勘探开发前景,并确定勘探方向和有利选区。
(二)选区评价
本阶段以煤层气地质理论为基础,充分利用以往勘探资料,运用地质分析的方法,在选区评价原则的指导下,完成煤层气地质研究的任务,整体评价有利区带的煤层气勘探开发潜力,对勘探前景进行评估。其主要任务是确定勘探方向和有商业性开采价值的勘探目标。具体程序和内容如下:
(1)资料收集与采集。资料收集应围绕煤层分布、水文地质和储层特征等方面进行。资料包括区域地质调查资料、地震和非地震资料、钻井试气和煤孔资料、遥感和航磁资料、油气勘探分析化验资料、煤田勘探分析化验资料、水文调查资料、煤矿采矿资料等。此外,还要进行必要的地面地质调查、矿井井下调查,并采集煤样进行必要的实验分析。
(2)资料的整理和归纳。获得的各种资料应进行认真整理和归纳,从中提取与含气性和可采性有关的地质评价参数,对反映煤层气地质特征的各项地质参数进行系统整理、深化研究,编制分析图件,建立系统剖面,建立符合研究区特点的区域性煤层气预测评价模式(原则、参数、标准)。
(3)初步分析评价。根据选区评价原则,进行煤层气勘探开发潜力综合评价,预选出煤层气形成地质条件较好的有利勘探目标。一般综合评价包括以下内容:①确定主力煤层的分布、厚度、埋深、煤阶;②确定煤层含气量,做等温吸附特征及其他分析化验资料分析;③圈定煤层气氧化散失带、生物降解带、饱和吸附带和低解吸带范围;④预测煤层渗透率,其手段包括矿井及岩心割理观察测量、裂缝充填程度及充填物观察、测井曲线分析、构造曲率分析、构造应力分析、孔隙结构分析等;⑤进行顶底板及煤层含气性分析、物性分析;⑥进行封盖条件分析,研究煤层气保存条件;⑦进行水文地质条件分析,包括含煤地层水化学特征、水动力状况、与上下地层水文地质关系等;⑧进行成藏条件分析,初步确定煤层气藏类型;⑨圈定可能的气藏范围并计算远景资源量;⑩综合评价、优选有利勘探目标,提出目标钻探资料井井位。
(三)目标评价
目标评价是在煤层气资料井(预探井)钻探后,优选出最有利目标,可以通过部署评价井以获取更多、更可靠的地质评价参数,也可以通过单井试气,求出稳定产量,寻找高产富集区块,对煤层气开发潜力作出进一步评价。
目标评价除了地质研究要求的任务外,还要着重做好以下研究工作:
(1)利用煤孔、地震资料及野外踏勘查明构造、断裂系统,确定评价井位。
(2)利用绳索取心工具取全目的煤层煤心、顶底板岩心,进行含气量、气组分、同位素、等温吸附线、镜煤反射率、煤的工业分析、显微组分、封盖层突破压力、扩散系数、孔隙度、渗透率等项目分析工作。
(3)利用组合测井资料精确地确定煤层及厚度、深度、密度、孔隙度、灰分含量、吸附饱和度等项数据及地应力、突破压力、孔隙压力、弹性模量、泊松比、坍塌压力、破裂压力等的处理解释。
(4)采用微型压裂法求取煤层及其相邻岩层的原地应力、煤层破裂压力、闭合压力等资料。
(5)利用注入/压降试井求取可靠的渗透率、地层压力和地层温度数据。
(6)利用大地电位法裂缝监测及CT测试搞清煤层压裂裂缝方位及长度。
(7)通过单井抽排,系统求出产气量、产水量和压力变化,取得稳定产能和流体性质,并通过地层水Cl-同位素分析确定煤层水性质和进入煤层的时代。
(8)利用试气产能及储层数值模拟预测产量变化,确定下一步试验井组试采的合理井距、井网几何系统及试气方案,提交煤层气控制储量和预测储量,作出经济评价。
除对煤层进行上述作业、分析外,必要时还应对主要含水层进行取心和渗透率测试,以了解地下水的流动能力。
在上述工作的基础上,根据新获得的可靠资料,对探区煤层气的开发潜力和经济效益作出进一步的评价。本阶段还可将各种评价参数输入计算机中,运用储层模拟技术进行煤层气产量预测,对煤层气开发潜力进行定量评价,还可对各种主要评价参数进行敏感性分析,以找出影响煤层气产量的因素,指导下一步的勘探和评价。
当目标评价结果认为该区具有较好的开发潜力,并优选出区内最有利区块时,即可进入下一个评价阶段——区块评价阶段。
(四)区块评价
煤层气的开采与常规天然气不同。当产层打开后,要经过一段时间的排水,使煤储层压力下降到煤层临界解吸压力以后,煤层气才能逐渐解吸产出。随着排水作业的连续进行,降压幅度和降压范围不断扩大,煤层气产出量就越来越大。从排水降压到气的产出有时长达数月,有时长期排水仍无法使储层充分降压。因此,仅根据勘探阶段获得的评价参数如含气量、渗透率等,尚不能充分可靠地评价煤层气开发潜力,需要通过小规模的长期试采,以确认煤层气稳定的生产能力。结合这些资料,对重点区块展开全面、深入的勘探和评价,为投入开发作准备,这就是区块评价的主要目的。
确定完井方式、压裂措施也是区块评价的重点之一。煤层气开采井通常都进行强化作业,如压裂、洞穴完井等。上述作业完成后,即可进行排采试验。试采周期与井距、储层渗透性有关。
总之,煤层气井需要长期排采实现井间干扰,以使煤层在一定面积内整体降压,直到取得试验区长期、稳定的气、水产量数据。
区块评价的具体任务基本与选区地质研究任务相同,更突出的是成图要求更精确,地质认识更深入,对试气特别是试验井组试采资料更了解,并取得区块单井稳定产能,其工作重点如下:
(1)通过井组试验对各煤层分布、煤层气藏类型、成因类型、可商业性开采范围、煤层含气量、渗透率、层间水化学特征及动力条件、封盖条件及产能等情况基本清楚,确定下一步投入开发的合理井距、增产措施、抽排方式及稳定产量。
(2)通过井组试验进行长期连续排采和产能动态监测,获取各项数据,建立气、水产量与生产压力和时间关系曲线,确认实际气、水产量及开采特点。
(3)进行干扰试井,了解储层连通情况及渗透率方向性。只有实现井间干扰的产量才能认识区块将来大规模开采的开发潜力,准确搞好产能预测。
(4)根据储层参数和试采生产数据,运用储层模拟技术,进一步进行合理井距、井网、完井方式等敏感性分析,以确定气田生产策略,预测生产历史。
(5)进行下游工程调研和市场调查的前提下,搞好气田开发利用的经济敏感性分析(即经济评价),以确定是否进行商业性开发。
(6)准确计算各类储量,为煤层气田开发和滚动勘探开发提出战略性规划。

一、煤层气选区评价参数标准的建立
参考国外煤层气目标评价标准、参数及中国煤层气高产富集的基本条件,从中国煤层气勘探开发实际地质条件出发,优选出资源丰度、煤阶、煤层厚度、含气量、地解比、吸附饱和度、煤层原始渗透率、有效地应力、煤层埋深、构造条件及水文地质条件等11项关键参数。
(一)煤层气资源规模及丰度
国家标准《石油天然气资源/储量分类》规定,常规天然气大、中、小型气田的资源量规模分别为大于300×108m3、50×108~300×108m3和小于50×108m3,考虑到煤层气采收率低的事实,上述界限分别设为1000×108m3、200×108~1000×108m3和小于200×108m3。
与煤层气目标资源规模相比,资源丰度的意义更为重要,一井多层或多段开发可以弥补含气量偏低之不足,煤层累厚大而含气量偏低的目标区同样有较大的开发价值。同时,资源丰度作为唯一指标,亦可避免多重指标造成的不协调矛盾,从而可使煤层气区带含气性类型的确定具有唯一性。
煤层气储层与常规储层相比,属低孔隙度、低渗透率、低丰度储层。储量丰度受控于煤层厚度、含气量及煤层密度、灰分含量等因素。具有煤层气开发价值的地区,资源量丰度应在中等以上。如美国圣胡安盆地资源丰度为1.28×108m3/km2,中国沁水煤层气大气田资源丰度大于2.00×108m3/km2,美国黑勇士盆地资源丰度为0.38×108m3/km2,中国鄂尔多斯盆地东部大宁—吉县地区煤层气资源丰度为2.85×108m3/km2,中国宁武盆地南部煤层气资源丰度为2.10×108m3/km2,中国准噶尔盆地南部昌吉地区煤层气资源丰度为1.06×108m3/km2,中国霍林河盆地煤层气资源丰度为2.40×108m3/km2。而目前勘探尚未获得工业性开发的一些盆地或地区,如中国江西丰城、云南恩宏、东北三江—穆棱河盆地、淮南、淮北等地区,煤层气资源丰度均小于0.50×108m3/km2。
对全国29个聚气带(台湾除外)和115个目标区的统计结果表明,资源丰度小于0.50×108m3/km2的聚气带占7%,目标区占12%;资源丰度介于0.5×108~1.5×108m3/km2之间聚气带占57%,目标区占55%;资源丰度大于1.5×108m3/km2的聚气带占36%,目标区占33%。在资源丰度分布直方图(图4-5)上(叶建平等,1998),资源丰度0.5×108m3/km2和1.5×108m3/km2处对应于煤层气区带资源丰度分布曲线上的两个拐点,是资源丰度变化或分布的两条自然分界。由此,分别以资源丰度0.5×108m3/km2和1.5×108m3/km2为界,将煤层气区带划为富气聚气带(目标区)、含气聚气带(目标区)和贫气聚气带(目标区)3种含气类型(表4-2)。

表4-2 中国煤层气目标区资源规模及丰度划分表


图4-5 中国煤层气区带资源丰度累计频率直方图

(二)煤阶
煤的吸附能力随煤阶的变化呈现阶段式、跃变式变化,充分反映出煤化作用控制分子结构、晶体结构和表面物理化学性质,是煤吸附能力的主要控制因素。
因此,由于低煤阶吸附能力较低,决定了低煤阶煤含气量较低,在确定煤层气选区评价标准时低煤阶含气量标准应相应降低,同时煤层厚度标准应相应提高,以弥补含气量的不足(表4-3)。

表4-3 中国不同煤阶划分标准表

(三)煤层厚度
国内外获商业性煤层气流的地区,煤层总厚度均大于10m,主力煤层厚度大于2m,薄煤层分布区的煤层气一般没有商业开采价值。美国圣胡安盆地高产区煤层平均厚15m,低煤阶的粉河盆地煤层厚12~30m;中国沁水煤层气田、鄂尔多斯盆地东部大宁—吉县地区和宁武盆地南部煤层气富集区煤层厚15m左右,韩城地区煤层单层厚度大于1.5 m,准噶尔盆地昌吉地区煤层厚30m左右,霍林河盆地煤层厚度超过50m。
通过统计中国主要煤层气目标区煤层厚度与煤层含气量及单井日产量之间的关系可以得出,中高煤阶煤层单层厚度应大于1.5m,大于5m最有利,低煤阶煤层厚度应大于5m,煤层气开发具有较好效果,大于10m最有利(图4-6、图4-7)。

图4-6 中国中高煤阶煤层厚度与煤层含气量及单井日产气量之间的关系图


图4-7 中国低煤阶煤层厚度与单井日产气量之间的关系图

(四)煤层含气量
国内外已开发的煤层气气田高产区块以较高含气量为主,美国圣胡安、黑勇士盆地重点开发区,平均含气量分别为17.0m3/t、16.6m3/t;中国沁水煤层气田平均为16.0m3/t,最高达30.0m3/t,鄂尔多斯盆地东部大宁—吉县地区煤层含气量平均为16.0m3/t,宁武盆地南部煤层含气量平均为11.0m3/t。而含气量小于8.0m3/t的一些低含气、高饱和地区,如美国尤因塔盆地、粉河盆地单井日产气量也可超过4000m3;中国霍林河盆地煤层含气量平均为5.7m3/t,吸附饱和度超过90%,单井日产气量达到1000m3。
从中国煤层含气量与单井日产量之间的关系可以看出,中高煤阶单井日产气超过1000m3的煤层气井煤层含气量大于5.0m3/t,低煤阶单井日产气超过1000m3的煤层气井煤层含气量大于2.0m3/t。
初步将煤层气选区评价煤层含气量界限中、高煤阶为5.0m3/t以上,大于8.0m3/t最有利,低煤阶煤层含气量大于2.0m3/t,大于4.0m3/t最有利(图4-8)。

图4-8 中国中高煤阶煤层含气量与单井日产气量之间的关系图

(五)煤层气吸附饱和度
吸附饱和度是实测含气量与理论含气量的比值。实测含气量是煤心解吸得到的含气量(包括解吸气、残余气和损失气),需要用绳索式密闭取心技术快速取煤心罐装解吸实测;理论含气量是吸附等温线上与原始地层压力对应的含气量。
一些煤层气高产富集区块均为高饱和度,如圣胡安盆地为90%~98%,黑勇士盆地为92%~99%,低煤阶的粉河盆地超过100%,沁水煤层气田为85%~95%,大宁—吉县地区为80%~100%,宁武盆地南部地区超过85%,昌吉地区为95%~98%,霍林河盆地超过90%;中等饱和度气藏因地解压差大而开采成本高,如鄂尔多斯盆地东部吴堡为60%~80%;低饱和度气藏一般无商业开采价值,如沁水盆地屯留地区,吸附饱和度低于30%,临县—兴县地区也仅为30%~50%。
从中国煤层吸附饱和度与单井日产量之间的关系可以看出,单井日产气超过1000m3的煤层气井煤层吸附饱和度均大于50%,产气效果较好的地区煤层吸附饱和度大于70%。因此初步将煤层气选区评价吸附饱和度界于50%以上,大于70%最有利(图4-9)。

图4-9 中国煤层含气饱和度与单井日产气量之间的关系图

(六)煤层原始渗透率
煤层气与常规天然气显著不同,一是煤层同为源岩和产层,煤层气吸附量与其孔隙内表面积直接相关;二是煤层为低孔、低渗储层,其割理发育程度是影响其渗透率并控制产能的关键因数之一。
煤的原始渗透率无法在实验室测定,一般要在井筒中采用注入/压降试井法或DST试井法测试求取。低渗透率煤层分布区的煤层气一般无开采价值,产能高的地区,煤层原始渗透率一般为高—较高。例如,圣胡安盆地高产区块为1×10-3~50×10-3μm2,属中高渗透率;黑勇士、皮申斯及沁水煤层气田、鄂尔多斯盆地东部柳林地区一般为0.5×10-3~5.0×10-3μm2,为较高渗透率。日产气量1000~1500m3的较低工业性气流区,多为中—低渗透率,如陕西吴堡地区、山西沁水盆地东部屯留地区,渗透率0.1×10-3~0.5×10-3μm2。
从中国煤层渗透率与单井日产气量之间的关系可以看出,单井日产气量超过1000m3的煤层气井煤层原始渗透率要大于0.1×10-3μm2,单井日产气量超过2000m3的煤层气井煤层原始渗透率要大于0.5×10-3μm2(图4-10)。

图4-10 中国煤层渗透率与单井日产气量之间的关系图

一般认为低煤阶煤要求渗透性较高煤阶煤高,国外一般低煤阶煤层渗透性达到几十至上百个毫达西,如粉河盆地一般10×10-3~20×10-3μm2,苏拉特一般2×10-3~10×10-3μm2,中国准南一般2×10-3~13×10-3μm2,阜新一般大于0.5×10-3μm2。
(七)有效地应力
有效地应力指煤层压裂最小有效闭合应力,为煤层破裂压力与其抗张强度之差。有效地应力与区域地应力场、煤层埋深有关。煤层气多富集于高地应力下的局部低地应力区。煤层有效地应力低的地区,其煤层渗透率比相同条件下的高应力区的煤层渗透率要高。煤层有效地应力愈大,其压裂难度愈大。煤层地应力超过25MPa时,一般压裂效果差。圣胡安盆地高产区域地应力为3.0~8.0MPa,沁水煤层气田为7.9~9.4MPa,均属最有利区。
通过中国主要煤层气目标区煤层渗透率与有效地应力之间的关系可以得出,煤层地应力应小于25MPa,地应力小于15MPa最为有利(图4-11)。

图4-11 中国主要煤层气目标区煤层渗透率与有效地应力之间的关系图

(八)煤层埋深
煤层埋深是影响煤层有效地应力的重要参数之一,一般随煤层埋深增加,煤层有效地应力随之增加。煤层埋深同时影响煤层渗透率,一般随埋深增大煤层渗透率减小。煤层埋深还影响煤层含气量及含气饱和度。另外,随着煤层埋深增加煤的演化程度也会随之增加(图4-12)。而且,煤层埋深越深,煤层气开采成本和开采难度越大,不利于煤层气开发。
美国圣胡安和黑勇士盆地煤层气高产井煤层埋深一般小于1200m,美国粉河、加拿大艾伯塔盆地煤层埋深300~500m,中国沁水煤层气田煤层埋深一般150~800m、大宁—吉县煤层埋深一般小于1200m。具有工业开采价值的煤层富集区煤层埋深应小于1500m,小于1000m最有利。
(九)地解比
地解比是利用吸附等温线实测含气量对应的临界解吸压力(图4-13)与原始地层压力的比值。临界解吸压力一般利用初期开采井开始出气的井底压力加以校正,此值反映了产气高峰期快慢和高产富集条件。临界解吸压力愈接近原始地层压力,高产富集条件愈优越。
高地解比区如美国圣胡安盆地高产区块为0.93,黑勇士盆地为0.72~0.99;中国大宁—吉县地区为0.60,宁武南部为0.50,昌吉地区为0.70,霍林河盆地为0.90,沁水煤层气田樊庄区块日产气大于2000m3的井临界解吸压力一般超过0.50。中地解比区如中国吴堡、大城地区为0.23~0.25,开采中产气量低(小于2000m3)、递减快。而低地解比区一般反映含气量低、含气饱和度低,不具备煤层气开发条件,如中国河北唐山地区为0.04~0.15。

图4-12 不同地应力下煤层渗透率与煤层埋深之间的关系图


图4-13 中国沁水盆地樊庄区块临界解吸压力与平均日产气量的关系图

初步将煤层气选区评价地解比界于0.20以上,大于0.50最有利。
(十)构造发育状况
构造因素直接或者间接控制着含煤地层形成至煤层气生成聚集过程中的每一个环节,是所有地质因素中最为重要而直接的控气因素。构造发育状况直接影响煤层气的保存,不同类型的地质构造,在其形成过程中构造应力场特征及其内部应力分布状况不同,均会导致煤层和封闭层的产状、结构、物性、裂隙发育状况及地下水径流条件等出现差异并进而影响到煤储层的含气特性。在中国,煤层气保存条件尤为重要,煤层气藏形成后得以保存至今,要求构造条件简单,断层稀少,煤体结构保存完整,同时简单的地质构造也有利于煤层气的开发,近期煤层气开发表明,高产井分布于构造上斜坡带。
(十一)水文地质条件
水文地质条件是影响煤层气赋存的一个重要因素。煤层气以吸附态赋存于煤孔隙中,地层压力通过煤中水分对煤层气起封堵作用。因此,水文地质条件对煤层气保存、运移影响很大,对煤层气的开采至关重要。中、高煤阶生气不成问题,关键是后期保存,因此中、高煤阶煤层气富集区要求水文地质条件简单,处于高矿化度弱径流-滞留区,煤层气井排采过程中易降压,产水量适中,有利于煤层降压解吸。低煤阶如果煤层气成因以生物成因为主,则要求弱径流区,低矿化度有利于晚期生物气生成及水动力承压封堵有利于煤层气的保存,如果以热成因为主则对水文地质条件的要求与中高煤阶相同。
根据以上研究,得出中国煤层气选区评价参数及标准见表4-4。

表4-4 中国煤层气选区评价参数标准表

二、煤层气目标区优选评价方法体系
(一)煤层气目标区优选思路
中国煤层气资源分布地域广,成煤期多,经历的构造运动期次变化很大,成煤环境复杂,成煤规模、构造条件、演化程度复杂,因此中国煤层气目标区具有如下特点:
(1)目标区众多,共有5大聚气区、30个聚气带及115个煤层气目标区。
(2)目标区地理位置分散,在全国范围内除了西藏、台湾及海南等省区外均有分布。
(3)目标区在规模、地质条件及煤层气开发基础等方面存在着很大的差异。根据已有的认识,各目标区开发前景差异也很大。
(4)目标区研究程度参差不齐,有的目标区进行了大量研究,开发工作已经全面展开,有的工作极少。因此,各个目标区要讨论的因素只有部分目标区数据齐全,相当一部分目标区只有部分因素数据。
根据上述特点,煤层气目标区的优选排序应该是多层次的。即不可能按照统一标准来进行全部煤层气目标区的优选排序工作。对于全部目标区,应采用能够获得的因素来进行;对于研究程度较高的目标区,可采用更多的因素。因此,优选工作是递进的。即随着优选层次的上升,优选结果越来越接近实际情况。所以,这里采用的优选方法也可以称为“多层次综合递进优选法”。根据具体情况,可以采用以下4个层次的优选:
第一层次,利用含气量这一关键因素采用“一票否决”进行筛选。
第二层次,利用评价面积-资源丰度组合进行第二次筛选。主要考虑目标区规模和资源量大小对目标区进行筛选,并进一步从煤层气资源因素的角度对煤层气目标区进行优选,考虑的因素包括评价区面积、资源丰度、含气量、吸附饱和度、煤级、地解比、构造条件、水文地质条件和开发基础等。
第三层次,关键因素渗透率组合优选。在该层次中采用渗透率作为关键因素。所以,只有进行过试井的目标区才能参加优选,考虑的其他因素包括目标区面积、资源丰度、含气量、吸附饱和度、煤阶、地解比、构造条件、水文地质条件、渗透率及开发基础因素等。
第四层次,储层压力关键因素二次优选。该层次采用的关键因素为储层压力。只有经过煤储压力试井的目标区才能参加优选,考虑的其他因素包括目标区面积、资源丰度、含气量、吸附饱和度、渗透率、构造条件、水文地质条件和开发基础因素等。
综上可以看出,随着优选排序层次的提高,考虑的关键因素综合性越高、代表性越强,优选结果与实际情况越接近。
(二)煤层气目标区优选方法和模型
为了实现上述优选思路,必须选择恰当的计算方法使评价结果合理化。为此,这里引入3种评价方法:风险系数法、综合排队系数法和区间数模糊综合评判法。
1.风险系数法
该法是国际上对常规油气圈闭进行定量排序的基本方法。在对地质风险因素进行正确分析的基础上,采用概率加的方式对主要控气地质因素进行计算机处理,得出反映各评价单元综合风险大小的地质风险系数,再根据风险系数的大小进行排序。若某一评价单元(i)中包括n个主要风险要素,且某一要素(j)的相对风险概率为Pi为

煤层气开发利用前景和示范工程

式中:fij为第i个评价单元中的第j个风险要素的绝对值;Qj为第j个要素的权重值;fj,max为所有评价单元中第j个风险要素的最大值。
风险概率即为风险系数,其数值分布在0~1之间。由于在算法中引入了归一化过程,因此这里的风险系数只是各评价单元之间相对概率大小的度量或排序依据,而不能将其视为绝对概率。显然,风险系数越大,评价单元的煤层气勘探开发前景就越差;反之则越好。
将所有参评单元风险系数按大小进行排序,便可得到最终的排序结果。采用最优化分割方法对排序结果进行处理,按风险概率的相似性分为若干风险系数组,以利于进一步的勘探风险级别评价及其与“关键因素逐级分析法”的结果进行对比。
2.综合排队系数法
该法是由中国石油资源评价专家武首诚(1994)提出的。他将由地质风险分析筛选出来的风险要素进一步综合为地质风险评价(Ri)和资源量(Qi)两大类,并赋以直角坐标系中x轴和y轴的数量化意义。Y值表示资源量,X值则为其余要素的概率平均值。
根据上述两类系数,计算综合排队系数(Ra),然后由其大小对参评单元进行综合排序。在数学意义上,Ra表示评价单元P(x,y)距具有最大理论潜势的评价单元A(1,1)之远近。因此,Ra越小,资源潜势就越大。在处理过程中将最大资源系数定义为1,因此Ra值分布在0~1之间。
根据煤层气资源及其控气因素有别于常规油气资源的特征,本书对综合优选系数法进行了修改。将x轴重新定义为资源系数,为含气量、资源量、资源丰度和理论饱和度的概率和;y轴则为保险系数Gi,其值等于1-Ri,其中Ri为其余主要风险要素的概率和。
由此得到综合优选系数Ra的表达式:

煤层气开发利用前景和示范工程

资源系数和保险系数中各包括了若干要素,求算这两个系数的原理、方法和上述风险概率值的计算方法相同。
3.区间数模糊综合评判法
模糊综合评判方法是应用广泛的多因素综合评价方法之一,它对用模糊数表示的不确定性评价因素体系,有着良好的处理能力。但是对含有区间数(即一个有界闭区间)表示的评价因素,模糊综合评判已无能为力,其中关键是区间数的排序问题难以解决。关于区间数的排序,本书借助区间数的排序方法构建区间数模糊综合评判的数学模型如下:
设X={x1,x2,…,xm}是因素集,其中xi是评判指标,如“埋深”、“煤厚”等,其中部分因素用区间数表示;Y={y1,y2,…,yn}是评语集,其中yi是模糊语言,如“优”、“良”等,设A是被评判的对象,如煤田的某一块段。评判步骤如下:
单因素评判:由于评判对象A自身的某些不确定性,对A的某因素xi而言,若A为一个准确值,则它属于yj的程度用一个模糊值来表示;若A不确定,则它属于yj的程度用一个区间值来表示。另外,根据普通实数是一个特殊的区间数,把用一个模糊值表示的评判指标也用区间数表示。于是对某一评判因素xi,A属于yj的程度均可表示为区间数[ , ][0,1],i=1,2,…,n;j=1,2,…,m。
于是得到一个区间值模糊映射 f∶x→IF(Y)

煤层气开发利用前景和示范工程

这里,IF(Y)是Y上的全体区间值模糊集。得到区间值模糊综合评判矩阵为

煤层气开发利用前景和示范工程

确定评判指标的权值:设W=(w1,w2,…,wn)ϵF(X),这里F(X)是X 上的全体模糊记。Wi是各因素的权值,本书采用灰色关联法求取各因素的权值,且满足w1+w2+…+wn=1。

煤层气开发利用前景和示范工程

这里

煤层气开发利用前景和示范工程

排序:运用区间数排序方法排列区间数 ,(j=1,2,…,m)设 则被评判对象A最终属于评语yk。
为了实现对煤层气目标区的优选排序计算,必须获得相关的要素数值。煤层气目标区评价中使用的要素,均为具体的数据和区间数据。在进行优选排序时,因要计算其相对风险概率值、综合排队指数及区间数模糊综合评判,故要对同一因素取值相同的单位,即可实现上述赋值。而对一些不能取具体数据的要素,如区间要素,必须规定其模糊级别的分级方法。
为了避免人为因素的作用,这里采用层次分析方法来进行权重确定。利用此法确定因素权重的原理是:对于某一层次某个因素,建立下一层次元素的两两判断矩阵,一次计算该层次因素对于上一层次的相对权重。两两判断矩阵数值的含义如表4-5所示。
这样,对于上一层次的某个元素,下一层次中被支配的n个子元素或要素就构成了一个两两判断矩阵:
A=(aij)n×n
其中,aij为要素i与要素j相对于上一层次要素的比例标度。

表4-5 两两判断矩阵构建中1〜9标度的含义表

下一步,对判断矩阵进行一致性检验。判断矩阵一致性检验方法很多,如特征根法:

煤层气开发利用前景和示范工程

式中:w为权重向量, ;A为判断矩阵; 为A的最大特征根。
一致性指标CI和一致性比例CR的求算方法为

煤层气开发利用前景和示范工程

式中:RI为平均随机一致性指标,可通过查表获得。当CR<0.1时,判断矩阵的一致性是可以接受的。反之,需要对判断矩阵进行适当的修正。
最后计算各层元素对目标层的合成权重:

煤层气开发利用前景和示范工程

式中:w(k)为第二层中元素对总目标的排序向量;w(k-1)为第k层中第nk个元素对第k-1层中第j个元素为准则的排序权重向量。最后需要指出,判断矩阵A需要通过专家调查来获得。
根据上述方法,进行权重计算得到权重系数(表4-6)。
采用风险系数法、区间数模糊综合评判法结合综合排队系数法进行排序。

表4-6 关键因素权重赋值及权系数计算结果表

相对于常规天然气资源,煤层气资源评价范围较局限,评价精度较低。国外和我国不同机构进行过多轮的煤层气资源评价,本节资料主要根据张新民等(2002,2008)的研究成果综述而成。

一、煤层气资源评价

根据国际能源机构(IEA)的统计资料和有关数据,估测全球煤层气资源量可达256.1×1012m3,主要分布在12个国家中(表4-6)。从表4-6中可以看出,煤炭资源大国同时也是煤层气资源大国。俄罗斯煤炭资源量为6.5×1012t,煤层气资源量为(17~113)×1012m3,居世界第一位。

表4-6 世界主要产煤国的煤层气资源和煤炭资源统计

自20世纪80年代以来,国内许多单位及个人在不同时期为在国家层面上摸清我国煤层气的资源家底,对全国煤层气资源进行过多次预测,获得了相应的成果,具体如表4-7所示。根据最新预测结果,中国煤层气资源量为32.86×1012m3,超过美国,居世界第三位。俄罗斯、加拿大、中国、美国等前4个国家的煤层气资源量共计243×1012m3,约占全世界煤层气资源量的90%。我国煤层气勘探程度较低,根据2009年统计,全国煤层气探明地质储量达到1781×108m3,年产量达7×108m3,产能达25×108m3。近年来,随着我国对煤层气开发的投入加大,煤层气产业正进入一个快速发展的阶段。

表4-7 全国煤层气资源量估算结果

(据张新民等,2008)

二、煤层气资源分布

我国地质历史上聚煤期有14个,其中主要的聚煤期有7个,分别为早石炭世、石炭-二叠纪、晚二叠世、晚三叠世、早-中侏罗世、白垩纪、古近纪和新近纪。对不同成煤时代的煤层气技术可采资源量进行统计,结果表明,在参与计算的7个聚煤期中,石炭-二叠纪、晚二叠世、早-中侏罗世和白垩纪4个聚煤期煤层气技术可采资源量为138140.08×108m3,占99.39%,其他3个聚煤期仅为836.67×108m3,占0.6%。其中,早-中侏罗世煤层气技术可采资源量最大,为72940.67×108m3,占52.48%;石炭-二叠纪次之,为47783.1×108m3,占34.38%;其他成煤时代的煤层气技术可采资源量较小,仅为18252.98×108m3,占13.13%。

受煤炭资源分布的影响,我国的煤层气资源在地区分布上差别显著,煤层气技术可采资源的分布也极不均衡。统计结果显示,我国的煤层气资源量和技术可采资源量分布一致,主要集中在中部和西部地区,东部地区规模较小,华南地区稀少。中部的晋陕蒙含气区煤层气技术可采资源量最大,为66541.85×108m3,占全国技术可采资源量的47.88%;西部的北疆含气区次之,为37501.34×108m3,占26.98%;华南含气区最小,为475.22×108m3。晋陕蒙含气区和北疆含气总计为104043.19×108m3,占全国的75%,其他6个含气区仅为34933.56×108m3,占25%。

我国不同煤盆地的煤层气技术可采资源量差别显著。按盆地进行统计,煤层气技术可采资源量大于1×1012m3的盆地有4个,分别为鄂尔多斯盆地、沁水盆地、吐哈盆地和准噶尔盆地,这4个盆地煤层气技术可采资源量总计为85825.9×108m3,占总量的61.8%,其他盆地(或地区)仅为53150.8×108m3,占38.2%。在所有煤盆地中,鄂尔多斯盆地煤层气技术可采资源量最大,为42346.78×108m3,占全国煤层气技术可采资源量的30.47%;沁水盆地次之,为15939.60×108m3,占11.47%;吐哈盆地处于第三位,为14275.56×108m3,占10.27%;准噶尔盆地为13263.96×108m3;松辽盆地最少,仅为12.6×108m3。各盆地煤层气技术可采资源量情况见表4-8。

表4-8 我国各煤层气盆地(地区)煤层气技术可采资源量统计

(据张新民等,2008)

煤层资源量的计算在深度区带上按照1000m以浅、1000~1500m和1500~2000m三个区带进行。煤层埋深小于1000m范围是我国目前及未来很长一段时间煤层气勘探开发的有利深度区带,该区的煤层气技术可采资源量最大,为53206.88×108m3,占总量的38.28%,这也是我国煤层气勘探开发的一大优势。煤层埋藏1000~1500m和1500~2000m深度区带的煤层气技术可采资源量为85769.87×108m3,占61.72%。其中,1000~1500m深度范围为40686.01×108m3,占29.28%;1500~2000m埋深范围为45083.86×108m3,占32.44%。在目前的经济及技术条件下,1000~1500m和1500~2000m深度区带的煤层气勘探开发的难度较大,短时间内不会投入较大的经费和工作量,只可作为煤层气勘探开发的资源备用区带。

根据煤的变质程度,将煤层气划分为褐煤、低变质、中变质和高变质4类煤层气资源。低变质煤层气技术可采资源量规模最大,为81699.14×108m3,占58.79%;其次为中变质煤层气,为30682.13×108m3,占22.08%;褐煤煤层气技术可采资源量规模最小,为6381.96×108m3,占4.59%;高变质气技术可采资源量为20213.52×108m3,占14.54%。

三、煤层气勘探选区

图4-25 中国煤层气资源分区

张新民等(2002,2008)对我国煤层气进行了资源评价,研究中将煤层气评价区从大到小依次分为含气区、含气带和富集区,其中富集区为煤层气勘探开发目标区。

我国煤层气资源分区主要分8个含气区58个含气带(图4-25)(张新民等,2002),分别为:东部的黑吉辽(包括三江-穆棱河、延边、浑江-辽阳、抚顺、辽西、松辽东部和西南部7个含气带)、冀鲁豫皖(包括冀北东部、京唐、太行山东麓、冀中平原、豫北鲁西北、鲁中、鲁西南、豫西、豫东、徐淮和淮南11个含气带)、华南(包括鄂东南赣北、长江下游、苏浙皖边、赣浙边、萍乐、湘中、湘南和桂中北8个含气带);内蒙古东部、中部的晋陕蒙(包括冀北西部、大宁、沁水、霍西、鄂尔多斯盆地东缘、渭北、鄂尔多斯盆地北部、鄂尔多斯盆地西部、桌-贺、陕北、黄陇11个含气带)、云贵川渝(包括华蓥山、永荣、雅乐、川南黔北、贵阳、六盆水和渡口楚雄7个含气带);西部的北疆(包括吐哈、三塘-淖毛湖、准噶尔南、准噶尔东、准噶尔北、伊犁、尤尔都斯和焉耆8个含气带)、南疆-甘青(包括蒙甘宁边、西宁-兰州、河西走廊、柴达木北、塔里木东和塔里木北6个含气带)。

以上58个含气带中,京唐、太行山东、沁水、鄂尔多斯东缘、徐淮、三江-穆棱河、松辽-辽西、浑江-辽阳、准噶尔南、滇东-黔西含气带地质条件较优越。

张新民等(2008)在含气带基础上,将全国细分为115个富集区,富集区的面积介于10~19070km2之间,平均为1095km2;资源丰度为(0.06~8.77)×108m3/km2,加权平均为1.16×108m3/km2。根据我国煤层气富集区资源量规模分类标准(叶建平等,1998),并以上述加权平均值作为全国煤层气评价资源丰度,得到200km2和900km2两条富集区评价面积界线,并结合0.5×108m3/km2和1.5×108m3/km2两条资源丰度界线,将全国115个煤层气富集区归纳为9类。

富集区主要分布在华北和华南地区,二者占总数的81.74%。对埋深小于1500m的煤层气富集区进行评价,优选出韩城、阳泉-寿阳、峰峰-邯郸、淮北、平顶山、离柳-三交、晋城、开滦、淮南、吴堡、安阳-鹤壁、焦作、红阳、抚顺富集区作为近期煤层气的勘探目标区。



  • 煤层气资源评价和选区
    答:相对于常规天然气资源,煤层气资源评价范围较局限,评价精度较低。国外和我国不同机构进行过多轮的煤层气资源评价,本节资料主要根据张新民等(2002,2008)的研究成果综述而成。一、煤层气资源评价 根据国际能源机构(IEA)的统计资料和有关数据,估测全球煤层气资源量可达256.1×1012m3,主要分布在12个国家...
  • 煤层气选区评价参数标准和方法体系
    答:美国黑勇士盆地资源丰度为0.38×108m3/km2,中国鄂尔多斯盆地东部大宁—吉县地区煤层气资源丰度为2.85×108m3/km2,中国宁武盆地南部煤层气资源丰度为2.10×108m3/km2,中国准噶尔盆地南部昌吉地区煤层气资源丰度为1.06×108m3/km2,中国霍林河盆地煤层气资源丰度为2.40×108m3/km2。
  • 煤层气选区评价原则与程序
    答:主要对五大聚煤区按盆地进行煤层气资源评价,分析不同盆地的煤层气勘探开发前景,并确定勘探方向和有利选区。 (二)选区评价 本阶段以煤层气地质理论为基础,充分利用以往勘探资料,运用地质分析的方法,在选区评价原则的指导下,完成煤层气地质研究的任务,整体评价有利区带的煤层气勘探开发潜力,对勘探前景进行评估。其主要...
  • 豫西地区煤层气资源评价
    答:通常按勘探开发过程的阶段性将煤层气资源评价分为预评价、勘查评价和试采评价。目前豫西地区煤层气勘探开发还处于选区论证和钻前准备阶段,已往煤层气研究工作所针对的是二1煤层,且研究的区域有限,故不全面、不系统。本次评价的目的就是要从整体上对豫西地区煤层气前景进行评价,优选有利的煤层气勘探开发区块。很显然,...
  • 煤层气开发目标区的选定
    答:一般选区多位于煤厚大、埋藏深、煤级高,有大量甲烷涌出史,且平行于某主要断裂延伸方向的地段或在背向斜轴部附近。同时也要结合构造地貌和地表水文因素,如选择受断裂或裂隙控制的主流河道区和河流切割深且有较多涌水自流井分布的河道区。这些区域不但有较好煤层气资源量,而且也有有利的渗流条件。国内...
  • 六盘水煤田控气地质因素及煤层气资源评价研究
    答:在对六盘水煤层气地质特征研究的基础上,分析断层、褶皱、埋深对该区煤层含气量的影响,同时结合煤层气资源量计算方法算出埋深范围、平均煤层厚度、含气量,采用国土资源部 2006年组织的 “全国新一轮煤层气资源评价”项目的标准来评价煤层气资源类别,将煤层气资源分为Ⅰ类、Ⅱ类和Ⅲ类三个资源类别。用此方法对本...
  • 重点煤矿区的选择
    答:(一)选区基本原则 考虑国家当前的经济技术条件和能源、安全生产的需求,确定重点煤矿区选择的基本原则。(1)煤炭资源和煤层气资源丰富,煤层气开发资源潜力和能源意义大的煤矿区。煤炭资源保有储量>2×108t。(2)煤矿瓦斯灾害突出,煤矿瓦斯抽放工作要求迫切,煤层气开发安全生产意义大的煤矿区。矿井...
  • 煤层气资源特点
    答:我国煤层气资源的特点是资源总量丰富,地域分布广,埋深比较适中,煤田地质构造复杂,总体上具有低压、低渗和低饱和度的特征。(一)资源总量丰富,分布比较分散但又相对集中 中国陆上埋深2000m以浅的煤层气资源量达37×1012m3,仅次于俄罗斯和加拿大,占世界总资源量的14%,广泛分布在中国不同的含煤盆地...
  • 深部煤层注入/埋藏二氧化碳开采煤层气选区评价技术
    答:摘要: 目前,向深部煤层注入/埋存二氧化碳开采煤层气技术已经发展到微型先导性试验阶段,世界各国所做试验结果都表明该技术能够提高煤层气的单井产量和采收率,同时能够实现二氧化碳的埋存。但是,针对注入二氧化碳之前的选区评价研究较少,主要针对盆地级别的基础参数评价,没有进行系统的研究。本文以注入二氧化碳开采煤层气的可...
  • (二)煤层气勘探、开发的步骤与资源量、储量
    答:通过煤层气勘探阶段取得的煤资源量、含气量、渗透率、储层压力,以及等温吸附测定取得的解吸压力、含气饱和度等参数,经过综合分析对比即可选出进一步勘探开发的有利区块。 图31-1 煤层气勘探开发阶段划分及评价选区流程框图 图31-2 煤层气地质评价研究内容框图 开发评价阶段是在前期选定的有利区块基础上进行的。应当...