分布式供电的冷热电联产

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-08-07
什么叫分布式电力系统

分布式发电指的是在用户现场或靠近用电现场配置较小的发电机组(一般低于30MW),以满足特定用户的需要,支持现存配电网的经济运行,或者同时满足这两个方面的要求。
这些小的机组包括燃料电池,小型燃气轮机,小型光伏发电,小型风光互补发电,或燃气轮机与燃料电池的混合装置。由于靠近用户提高了服务的可靠性和电力质量。技术的发展,公共环境政策和电力市场的扩大等因素的共同作用使得分布式发电成为新世纪重要的能源选择。

优点一:
通过分布式发电和集中供电系统的配合应用有以下优点:
分布式发电系统中各电站相互独立,用户由于可以自行控制,不会发生大规模停电事故,所以安全可靠性比较高;

优点二:
分布式发电可以弥补大电网安全稳定性的不足,在意外灾害发生时继续供电,已成为集中供电方式不可缺少的重要补充;

优点三:
可对区域电力的质量和性能进行实时监控,非常适合向农村、牧区、山区,发展中的中、小城市或商业区的居民供电,可大大减小环保压力;

优点四:
分布式发电的输配电损耗很低,甚至没有,无需建配电站,可降低或避免附加的输配电成本,同时土建和安装成本低;

优点五:
可以满足特殊场合的需求,如用于重要集会或庆典的(处于热备用状态的)移动分散式发电车;

优点六:
调峰性能好,操作简单,由于参与运行的系统少,启停快速,便于实现全自动。

冷热电三联供是分布式能源的一种,具有节约能源、改善环境,增加电力供应等综合效益,是城市治理大气污染和提高能源综合利用率的必要手段之一,符合国家可持续发展战略。1998年1月1日起实施的《中华人民共和国节约能源法》第三十九条就明确指出 “国家鼓励发展下列通用节能技术:发展热能梯级利用技术,热、电,冷联产技术,提高热能综合利用率”。 2004年9月,国家发改委颁布《国家发展改革委关于分布式能源系统有关问题的报告》,支持小型分布能源系统发展,促进我国分布式能源系统的发展。2006年国家发展改革委会同财政部、建设部等有关部门编制了《“十一五”十大重点节能工程实施意见》,明确提出“建设分布式热电联产和热电冷联供;研究并完善有关天然气分布式热电联产的标准和政策”。三联供系统能充分利用天然气的热能,综合用能效率可达90%以上。同时可降低以天然气为燃料的供热成本,把一部分成本摊到电费上,减轻运营成本负担,与常规系统相比超出的初投资费用靠节省运行费5年内便可收回。由于三联供在能源转换效率方面所具有的突出优势,使得其在世界各国的能源领域大都具有显著地位。

冷热电联产系统概述
传统动力系统的技术开发以及商业化的努力主要着眼于单独的设备,例如,集中供热、直燃式 中央空调及发电设备。这些设备的共同问题在于单一目标下的能耗高,在忽视环境影响和不合理的能源价格情况下,具有一定的经济效益。但是,从科学技术角度出发,这些设备都尚未达到有限能源资源的高效和综合利用。 冷热电联产(CCHP)是一种建立在能的梯级利用概念基础上,将制冷、供热(采暖和供热水) 及发电过程一体化的多联产总能系统,目的在于提高能源利用效率,减少碳化物及有害气体的排放。 与集中式发电-远程送电比较,CCHP 可以大大提高能源利用效率:大型发电厂的发电效率一般为35%-55%,扣除厂用电和线损率,终端的利用效率只能达到30-47%。而CCHP 的能源利用率可达 到90%,没有输电损耗;另外,CCHP 在降低碳和污染空气的排放物方面具有很大的潜力:据有关 专家估算,如果从2000 年起每年有4%的现有建筑的供电、供暖和供冷采用CCHP,从2005 年起 25%的新建建筑及从2010 年起50%的新建建筑均采用CCHP 的话,到2020 年的二氧化碳的排放量 将减少19%。如果将现有建筑实施CCHP 的比例从4%提高到8%,到2020 年二氧化碳的排放量将 减少30%[13,14]。
冷热电系统方案选择
典型冷热电三联产系统一般包括:动力系统和发电机(供电)、余热回收装置(供热)、制冷系 统(供冷)等。针对不同的用户需求,冷热电联产系统方案的可选择范围很大:与热、电联产技术 有关的选择有蒸汽轮机驱动的的外燃烧式和燃气轮机驱动的内燃烧式方案;与制冷方式有关的选择 有压缩式、吸收式或其它热驱动的制冷方式。另外,供热、供冷热源还有直接和间接方式之分。
在外燃烧式的热电联产应用中,由于背压汽轮机常常受到区域供热负荷的限制不能按经济规模 设置,多数是相当小的和低效率的;而对于内燃烧式方案,由于通过技术革新已经生产出了尺寸小、 重量轻、污染排放低、燃料适应性广、具有高机械效率和高排气温度的燃气轮机,同时燃气轮机的 容量范围很宽:从几十到数百kW 的微型燃气轮机到300 MW 以上的大型燃气轮机,它们用于热电 联产时既发电又产汽,兼有高机械效率(30%~40% )和高的热效率(70%~80%)。所以在有燃气和燃 油的地方,燃气轮机正日益取代汽轮机在热电联产中的地位[16]。
压缩式制冷是消耗外功并通过旋转轴传递给压缩机进行制冷的,通过机械能的分配,可以调节 电量和冷量的比例;而吸收式制冷是耗费低温位热能来达到制冷的目的的,通过把来自热电联产的 一部分或全部热能用于驱动吸收式制冷系统,根据对热量和冷量的需求进行调节和优化。
常见的吸收式制冷系统
目前最为常见的吸收式制冷系统为溴化锂吸收式制冷系统和氨吸收式制冷系统。前者制冷温度 由于受制冷剂的限制,不能低于5 ℃,一般仅用于家用空调;后者的制冷温度范围非常大(+10 ℃~ .50 ℃), 不仅可用于空调,而且可用于0 ℃以下的制冷场所。同时,氨吸收式制冷系统可以利用 低品位的余热,所需热源的温度只要达到80 ℃以上就能利用,从而使能源得到充分合理的利用; 而且氨吸收式制冷系统还具有节电、设备制造容易、对安装场所要求不高、系统运行平稳可靠,噪 声小,便于调节、设备易于维修、可以在同一系统内提供给用户不同温度的冷量、单个系统的制冷 量很大等优点。直接热源制冷和间接热源制冷的选择和分配原则 直接热源制冷(燃气轮机排烟作为制冷热源)和间接热源制冷(由余热锅炉回收燃气轮机排气 余热产生蒸汽,再利用蒸汽作为制冷热源)的选择和分配原则:主要考虑过程效率、换热器的经济 性、及冷热电负荷分配的灵活性等方面考虑。直接热源制冷无需经过余热锅炉转换为蒸汽,能的品 位损失小、能量利用率高,但由于烟气为加热工质,所以换热器的设计需要考虑高温腐蚀问题;间 接热源制冷由于采用两次换热,能量利用率低,过程能的品位损失大,但由于是蒸汽为加热工质, 对换热器的材料要求较低。另外,直接热源制冷的负荷分配灵活性差。
冷热电系统模拟分析
为了揭示联产系统具有更高能源利用率的原因,本文对冷热电联产方案和简单的分布式供电系 统作了比较。所设计的三联产方案的系统流程如图1 所示。以天然气为燃料的燃气轮机主要承担供 应电力的任务,燃气轮机透平排烟首先进入回热器预热送往燃烧室的空气,然后进入余热回收器回 收中低温热量。余热回收器的冷侧主要有两股循环物流:物流1 为5bar 的饱和蒸汽,被送往溴化锂 吸收式制冷子系统作为制冷热源,经泵补偿压力损失后,回水为5bar 的饱和水;物流2 为90℃的 热水,被送入城市热网作为生活用热的热源,回水温度为70℃。 而电力单供系统选用TG80 有回热的微型燃气轮机,主要参数如
技术条件和基本假设
考虑到当前的技术水平,模拟过程中,各系统的主要热力参数为:选取英国宝曼公司的微型燃 气轮机TG80 作为主要发电设备,其主要热力参数如表3 所示;余热回收器为气-液换热设备,节点 温差不低于20 ℃,由于采用相对洁净的天然气燃料,选择酸露点温度为90 ℃;热用户主要为城 市采暖,进入热网的热水温度为90 ℃,回水温度为70 ℃;方案所采用的双效溴化锂制冷循环所 需热源为151.8 ℃饱和蒸汽,制冷温度为15 ℃,制冷性能系数COP 为1.2;方案2 采用的压缩式 制冷-热泵循环中,制冷温度为15 ℃,供热参数为70 ℃~90 ℃热水,热泵COP 为3。环境温度 25 ℃,标准天然气燃料低位发热量为34.88 MJ/m3。
模拟分析结果
三联产方案的能耗分析结果与分供系统能耗的比较如表4 所示。其中独立制冷系统采用电空调, 系统输入的能量为电力而非天然气的化学能,为了比较方便,我们采用如下方法将此系统所消耗的 电能折算为天然气耗量:
燃料消耗量=电力消耗量×(电力分供系统燃料消耗量/ 系统供电出力)
从表中可以看出,满足同样的电、热、冷需求,采用联产方式需消耗天然气31.8 m3/hr,而采用 分供方式则需要消耗天然气量为三个分供系统能耗的总和,为54.98 m3/hr。联产系统相对于分供系 随着人民生活水平的提高,能源消费日益增长,能源动力系统愈来愈向大容量、高度集中的模 式发展。然而,分布式供电是集中供电不可缺少的重要补充。它因灵活的变负荷性、低的初投资、 很高的供电可靠性和很小的输电损失等特点在世界范围内越来越受到重视。



  • 分布式供电冷热电联产
    答:CCHP系统通常包括动力系统、发电机、余热回收装置和制冷系统,可以根据用户需求选择不同的技术路径,如蒸汽轮机驱动的外燃烧式或燃气轮机驱动的内燃烧式方案,以及压缩式或吸收式制冷方式。燃气轮机在热电联产中的应用,特别是内燃烧式,因其高效、低排放和适应性强,逐渐取代了汽轮机的地位。在制冷方面...
  • 分布式供电的冷热电联产
    答:冷热电联产(CCHP)是一种建立在能的梯级利用概念基础上,将制冷、供热(采暖和供热水) 及发电过程一体化的多联产总能系统,目的在于提高能源利用效率,减少碳化物及有害气体的排放。 与集中式发电-远程送电比较,CCHP 可以大大提高能源利用效率:大型发电厂的发电效率一般为35%-55%,扣除厂用电和线损...
  • 分布式供电小结
    答:通过对比简单的分布式供电系统和冷热电联产系统,我们可以发现,传统的分布式供电方式并不高效,而冷热电三联产(CCHP)系统则展现出能效的显著优势。其热力过程遵循能级梯度利用原则,通过吸收式制冷和供热循环的协同,有效利用了系统内的中低温热能,相比分供系统,能节省约42%的能耗。随着天然气的广泛应用...
  • 分布式能源简介
    答:分布式能源是一种创新的能源供应模式,它将能源生产设施直接部署在用户端,既可独立运行,也可与电网相连。这种系统的设计目标是最大化资源和环境效益,通过整合和优化用户的能源需求以及资源配置,采用模块化和需求响应的设计理念。根据国际分布式能源联盟WADE的定义,分布式能源主要指高效冷/热电联供系统,能...
  • 分布式供电分布式供电的优点
    答:分布式供电的一大优点是减少了输电过程中的损耗,通过热电联产或热电冷三联产,提高能源利用率,使得能源供应更为高效。它能够与大电网协同工作,增强供电可靠性,特别是在电网故障或灾害情况下,能保证重要用户的供电需求。与传统的集中供电相比,分布式供电促进了能源综合梯级利用。当用户需要多种能量形式时...
  • 分布式供电分布式供电发展趋势
    答:冷热电三联产系统成为发展方向之一。冷热电三联产系统能在满足电力需求的同时,提供热能或同时解决供热和制冷问题,显著提高能源利用率和环保性能,从而成为分布式供电技术发展中重要的趋势。通过这种方式,分布式供电不仅能满足各类用户需求,无论在城市中心还是偏远地区,都能实现更高效、环保的能源利用。
  • 什么是三联供?
    答:三联供即冷热电三联供,是指以天然气为主要燃料带动燃气轮机、微燃机或内燃机发电机等燃气发电设备运行,产生的电力供应用户的电力需求,系统发电后排出的余热通过余热回收利用设备向用户供热、供冷。通过这种方式大大提高整个系统的一次能源利用率,实现了能源的梯级利用。还可以提供并网电力作能源互补,整个...
  • 分布式能源是上世纪什么时候开始的
    答:进入21 世纪,一些规模稍大的分布式能源项目开始陆续在北上广等大城市投入使用,尤其以天然气为燃料的分布式能源系统为代表。由于其成本较高,故在经济发达及电价承受能力较高的地区试点先行。北京中关村国际商城冷热电联产项目《可行性研究报告》于2003 年通过了审查,这是我国第一个由电力企业直接参与的...
  • 什么是可再生能源多联产系统
    答:生物质分布式冷热电多联产能源系统是可再生能源多联产系统。根据查询相关公开信息显示,可再生能源技术领域,是一种生物质分布式冷热电多联产能源系统,具体是以生物质燃料为原料,采用燃烧后的烟气,通过斯特林发动机产生动力直接发电,热废气通过吸收式制冷机实现制冷、供热,热交换装置实现空气预热及提供热水...
  • 分布式供电的发展趋势
    答:分布式供电主要方式分布式发电方式多种多样,根据燃料不同,可分为化石能源与可再生能源;根据用户需求不同, 有电力单供方式与热电联产方式(CHP),或冷热电三联产方式(CCHP);根据循环方式不同,可分为燃气轮机发电方式,蒸汽轮机发电方式或柴油机发电方式等。表1 列出了主要的分布式供电方式。 在...