220kV变电所二次回路设计与分析

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-06-30
110kV变电所二次回路设计与分析

一.毕业设计的技术背景和设计依据
1. 变电所建设规模:
变电所容量:31.5WM
电压等级:110/10KV
出线回路数:110KV 2回架口线;10KV 8回架空线;
与变电所连电力系统短路容量1000MVA;
负荷情况:最大负荷30MW,最小负荷 15MW。
10千伏侧负荷情况表:Tmax=5600小时 COSø=0.85

用户名称 最大负荷(KW) 线路长度(KM) 回路数
造纸厂 260 6 1
硅铁厂 800 4 1
电视机厂 300 3 1
毛纺厂 300 5 1
缝纫机厂 380 4 1
医院 300 3 1
自行车厂 450 2 1
学校 250 3 1

远景发展:10千伏侧远景拟发展6回电缆出线,最大综合负荷18MW,功率因数0.85
2. 环境条件
年最高温度:40℃; 年最低温度:-10℃;年平均温度:25℃;海拔高度:150M;
土制:粘土;雷暴日:30日/年。
二.毕业设计的任务
1. 熟悉题目要求,查阅相关科技文献;
2. 主接线方案设计(包括方案论证与确定、技术经济分析等内容;)
3. 选择主变压器;
4. 短路电流计算;
5. 电气设备选择;
6. 配电装置设计;
7. 防雷保护设计;
8. 撰写设计说明书、绘制图纸。
三.毕业设计的主要内容、功能及技术指标
主要内容:
1. 确定主接线:根据设计任务书,分析原始资料与数据、列出技术上可能实现的2—3个方案,经过技术经济比较,确定最优方案;
2. 选择主变压器:选择变压器的容量、台数、型号等;
3. 短路电流计算:根据电气设备选择和继电保护整定的需要,选择短路计算点,绘制等值网络图,计算短路电流,并列表汇总;
4. 电气设备的选择:选择并效验断路器、隔离开关、电抗器、电流互感器、电压互感器、母线、电缆、避雷器等、选用设备的型号、数量汇总设备一览表;
5. 配电装置设计;
6. 防雷保护设计。
主要设计指标
1. 本设计的边点多电气部分应具有可靠性、灵活性、经济性、并能满足工程建设规模要求;
2. 变电所功率因数不低与0.9。
四.毕业设计提交成果
1. 设计说明书;
2. 图纸:①电气主接线图一张(1#图纸);②配电断面图(2#图纸);
3. 中、英问摘要。

郑新才 蒋剑编著《怎样看110kV变电站典型二次回路图》本书针对110kV变电站主要微机型二次设备的二次回路接线,以国内各大微机保护厂商设备为例,结合实际工程图纸讲解二次回路的工作方式,从电路学的角度看二次回路,遵循“尽量抛开继电保护原理”。

本设计为华南理工大学2003级电气工程及自动化专业的电力系统课程设计,设计题目为:220kV区域变电所电气部分设计。
此设计任务旨在体现我们对专业课程知识的掌握程度,培养我们对本专业课程知识的综合运用能力。

一、设计任务:
根据电力系统规划需新建一座220kV区域变电所。该所建成后与110kV和220kV电网相连,并供给近区用户供电。

二、原始资料
1、按规划要求,该所有220kV、110kV和10kV三个电压等级。220kV出线6回(其中备用2回),110kV出线10回(其中备用2回),10kV出线12回(其中备用2回)。变电所还安装两台30MVA调相机以满足系统调压要求。
2、110kV侧有两回出线供给远方大型冶炼厂,其容量为80000kVA,其他作为一些地区变电所进线,最大负荷与最小负荷之比为0.6。10kV侧总负荷为35000kVA,ⅠⅡ类用户占60%,最大一回出线负荷为2500kVA,最大负荷与最小负荷之比为0.65。
3、各级电压侧功率因数和最大负荷利用小时数为:
220kV侧 小时/年
110kV侧 小时/年
10kV侧 小时/年
4、 220kV和110kV侧出线主保护为瞬时动作,后备保护时间为0.15s,10kV出线过流保护时间为2s ,断路器燃弧时间按0.05s考虑。
5、 系统阻抗:220kV侧电源近似为无穷大系统,归算至本所220kV母线侧阻抗为 (Sj=100MVA),110kV侧电源容量为500MVA,归算至本所110kV母线侧阻抗为 (Sj= 100 MVA)。
6、 该地区最热月平均温度为28°C,年平均气温16°C,绝对最高气温为40° C,土壤温度为18°C。
7、 该变电所位于市郊生荒土地上,地势平坦、交通便利、环境无污染。
第一章 电气主接线选择
第一节 概述
第二节 主接线的接线方式选择
电气主接线是根据电力系统和变电所具体条件确定的,它以电源和出线为主体,在进出线路多时(一般超过四回)为便于电能的汇集和分配,常设置母线作为中间环节,使接线简单清晰、运行方便,有利于安装和扩建。而本所各电压等级进出线均超过四回,采用有母线连接。
1、单母线接线
单母线接线虽然接线简单清晰、设备少、操作方便,便于扩建和采用成套配电装置等优点,但是不够灵活可靠,任一元件(母线及母线隔离开关)等故障或检修时,均需使整个配电装置停电。单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后,才能恢复非故障段的供电,并且电压等级越高,所接的回路数越少,一般只适用于一台主变压器。
单母接线适用于:
110~200KV配电装置的出线回路数不超过两回,35~63KV,配电装置的出线回路数不超过3回,6~10KV配电装置的出线回路数不超过5回,才采用单母线接线方式,故不选择单母接线。
2、单母分段
用断路器,把母线分段后,对重要用户可以从不同段引出两个回路;有两个电源供电。当一段母线发生故障,分段断路器自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电。但是,一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电,而出线为双回时,常使架空线路出现交叉跨越,扩建时需向两个方向均衡扩建,单母分段适用于:
110KV~220KV配电装置的出线回路数为3~4回,35~63KV配电装置的出线回路数为4~8回,6~10KV配电装置出线为6回及以上,则采用单母分段接线。
3、单母分段带旁路母线
这种接线方式:适用于进出线不多、容量不大的中小型电压等级为35~110KV的变电所较为实用,具有足够的可靠性和灵活性。
4、桥形接线
当只有两台变压器和两条输电线路时,采用桥式接线,所用断路器数目最少,它可分为内桥和外桥接线。
内桥接线:适合于输电线路较长,故障机率较多而变压器又不需经常切除时,采用内桥式接线。当变压器故障时,需停相应的线路。
外桥接线:适合于出线较短,且变压器随经济运行的要求需经常切换,或系统有穿越功率,较为适宜。为检修断路器LD,不致引起系统开环,有时增设并联旁路隔离开关以供检修LD时使用。当线路故障时需停相应的变压器。
所以,桥式接线,可靠性较差,虽然它有:使用断路器少、布置简单、造价低等优点,但是一般系统把具有良好的可靠性放在首位,故不选用桥式接线。
5、一个半断路器(3/2)接线
两个元件引线用三台断路器接往两组母上组成一个半断路器,它具有较高的供电可靠性和运行灵活性,任一母线故障或检修均不致停电,但是它使用的设备较多,占地面积较大,增加了二次控制回路的接线和继电保护的复杂性,且投资大。
6、双母接线
它具有供电可靠、调度灵活、扩建方便等优点,而且,检修另一母线时,不会停止对用户连续供电。如果需要检修某线路的断路器时,不装设“跨条”,则该回路在检修期需要停电。对于,110K~220KV输送功率较多,送电距离较远,其断路器或母线检修时,需要停电,而断路器检修时间较长,停电影响较大,一般规程规定,110KV~220KV双母线接线的配电装置中,当出线回路数达7回,(110KV)或5回(220KV)时,一般应装设专用旁路母线。
7、双母线分段接线
双母线分段,可以分段运行,系统构成方式的自由度大,两个元件可完全分别接到不同的母线上,对大容量且在需相互联系的系统是有利的,由于这种母线接线方式是常用传统技术的一种延伸,因此在继电保护方式和操作运行方面都不会发生问题。而较容易实现分阶段的扩建等优点,但是易受到母线故障的影响,断路器检修时要停运线路,占地面积较大,一般当连接的进出线回路数在11回及以下时,母线不分段。
为了保证双母线的配电装置,在进出线断路器检修时(包括其保护装置和检修及调试),不中断对用户的供电,可增设旁路母线,或旁路断路器。
当110KV出线为7回及以上,220KV出线在4回以下时,可用母联断路器兼旁路断路器用,这样节省了断路器及配电装置间隔。
第二章 主变压器容量、台数及形式的选择
第一节 概述
在各级电压等级的变电所中,变压器是变电所中的主要电气设备之一,其担任着向用户输送功率,或者两种电压等级之间交换功率的重要任务,同时兼顾电力系统负荷增长情况,并根据电力系统5~10年发展规划综合分析,合理选择,否则,将造成经济技术上的不合理。如果主变压器容量造的过大,台数过多,不仅增加投资,扩大占地面积,而且会增加损耗,给运行和检修带来不便,设备亦未能充分发挥效益;若容量选得过小,可能使变压器长期在过负荷中运行,影响主变压器的寿命和电力系统的稳定性。因此,确定合理的变压器的容量是变电所安全可靠供电和网络经济运行的保证。
在生产上电力变压器制成有单相、三相、双绕组、三绕组、自耦以及分裂变压器等,在选择主变压器时,要根据原始资料和设计变电所的自身特点,在满足可靠性的前提下,要考虑到经济性来选择主变压器。
选择主变压器的容量,同时要考虑到该变电所以后的扩建情况来选择主变压器的台数及容量。

第二节 主变压器台数的选择
由原始资料可知,我们本次所设计的变电所是市郊区220KV降压变电所,它是以220KV受功率为主。把所受的功率通过主变传输至110KV及10KV母线上。若全所停电后,将引起下一级变电所与地区电网瓦解,影响整个市区的供电,因此选择主变台数时,要确保供电的可靠性。
为了保证供电可靠性,避免一台主变压器故障或检修时影响供电,变电所中一般装设两台主变压器。当装设三台及三台以上时,变电所的可靠性虽然有所提高,但接线网络较复杂,且投资增大,同时增大了占用面积,和配电设备及用电保护的复杂性,以及带来维护和倒闸操作等许多复杂化。而且会造成中压侧短路容量过大,不宜选择轻型设备。考虑到两台主变同时发生故障机率较小。适用远期负荷的增长以及扩建,而当一台主变压器故障或者检修时,另一台主变压器可承担70%的负荷保证全变电所的正常供电。故选择两台主变压器互为备用,提高供电的可靠性。
第三节 主变压器容量的选择
主变容量一般按变电所建成近期负荷,5~10年规划负荷选择,并适当考虑远期10~20年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,该所近期和远期负荷都给定,所以应按近期和远期总负荷来选择主变的容量,根据变电所带负荷的性质和电网结构来确定主变压器的容量,对于有重要负荷的变电所,应考虑当一台变压器停运时,其余变压器容量在过负荷能力后允许时间内,应保证用户的一级和二级负荷,对一般性能的变电所,当一台主变压器停运时,其余变压器容量应保证全部负荷的70%~80%。该变电所是按70%全部负荷来选择。因此,装设两台变压器变电所的总装容量为:∑se = 2(0.7PM) = 1.4PM。
当一台变压器停运时,可保证对60%负荷的供电,考虑变压器的事故过负荷能力为40%,则可保证98%负荷供电,而高压侧220KV母线的负荷不需要通过主变倒送,因为,该变电所的电源引进线是220KV侧引进。其中,中压侧及低压侧全部负荷需经主变压器传输至各母线上。因此主变压器的容量为:Se = 0.7(SⅡ+SⅢ)。
第四节 主变压器型式的选择
一、主变压器相数的选择
当不受运输条件限制时,在330KV以下的变电所均应选择三相变压器。而选择主变压器的相数时,应根据原始资料以及设计变电所的实际情况来选择。
单相变压器组,相对来讲投资大,占地多,运行损耗大,同时配电装置以及断电保护和二次接线的复杂化,也增加了维护及倒闸操作的工作量。
本次设计的变电所,位于市郊区,稻田、丘陵,交通便利,不受运输的条件限制,而应尽量少占用稻田、丘陵,故本次设计的变电所选用三相变压器。
二、绕组数的选择
在具有三种电压等级的变电所,如通过主变压器的各侧绕组的功率均达到该变压器容量的15%以上,或低压侧虽无负荷,但在变电所内需装设无功补偿设备,主变宜采用三绕组变压器。
一台三绕组变压器的价格及所用的控制和辅助设备,比相对的两台双绕组变压器都较少,而且本次所设计的变电所具有三种电压等级,考虑到运行维护和操作的工作量及占地面积等因素,该所选择三绕组变压器。
在生产及制造中三绕组变压器有:自耦变、分裂变以及普通三绕组变压器。
自耦变压器,它的短路阻抗较小,系统发生短路时,短路电流增大,以及干扰继电保护和通讯,并且它的最大传输功率受到串联绕组容量限制,自耦变压器,具有磁的联系外,还有电的联系,所以,当高压侧发生过电压时,它有可能通过串联绕组进入公共绕组,使其它绝缘受到危害,如果在中压侧电网发生过电压波时,它同样进入串联绕组,产生很高的感应过电压。
由于自耦变压器高压侧与中压侧有电的联系,有共同的接地中性点,并直接接地。因此自耦变压器的零序保护的装设与普通变压器不同。自耦变压器,高中压侧的零序电流保护,应接于各侧套管电流互感器组成零序电流过滤器上。由于本次所设计的变电所所需装设两台变压器并列运行。电网电压波动范围较大,如果选择自耦变压器,其两台自耦变压器的高、中压侧都需直接接地,这样就会影响调度的灵活性和零序保护的可靠性。而自耦变压器的变化较小,由原始资料可知,该所的电压波动为±8%,故不选择自耦变压器。
分裂变压器:
分裂变压器约比同容量的普通变压器贵20%,分裂变压器,虽然它的短路阻抗较大,当低压侧绕组产生接地故障时,很大的电流向一侧绕组流去,在分裂变压器铁芯中失去磁势平衡,在轴向上产生巨大的短路机械应力。分裂变压器中对两端低压母线供电时,如果两端负荷不相等,两端母线上的电压也不相等,损耗也就增大,所以分裂变压器适用两端供电负荷均衡,又需限制短路电流的供电系统。由于本次所设计的变电所,受功率端的负荷大小不等,而且电压波动范围大,故不选择分裂变压器。
普通三绕组变压器:价格上在自耦变压器和分裂变压器中间,安装以及调试灵活,满足各种继电保护的需求。又能满足调度的灵活性,它还分为无激磁调压和有载调压两种,这样它能满足各个系统中的电压波动。它的供电可靠性也高。所以,本次设计的变电所,选择普通三绕组变压器。
三、主变调压方式的选择
为了满足用户的用电质量和供电的可靠性,220KV及以上网络电压应符合以下标准:
①枢纽变电所二次侧母线的运行电压控制水平应根据枢纽变电所的位置及电网电压降而定,可为电网额定电压的1~1.3倍,在日负荷最大、最小的情况下,其运行电压控制在水平的波动范围不超过10%,事故后不应低于电网额定电压的95%。
②电网任一点的运行电压,在任何情况下严禁超过电网最高电压,变电所一次侧母线的运行电压正常情况下不应低于电网额定电压的95%~100%。
调压方式分为两种,不带电切换,称为无激磁调压,调整范围通常在±5%以内,另一种是带负荷切换称为有载调压,调整范围可达30%。
由于该变电所的电压波动较大,故选择有载调压方式,才能满足要求。
四、连接组别的选择
变压器绕组的连接方式必须和系统电压相位一致,否则不能并列运行。
五、容量比的选择
由原始资料可知,110KV中压侧为主要受功率绕组,而10KV侧主要用于所用电以及无功补偿装置,所以容量比选择为:100/100/50。
六、主变压器冷却方式的选择
主变压器一般采用的冷却方式有:自然风冷却,强迫油循环风冷却,强迫油循环水冷却。
自然风冷却:一般只适用于小容量变压器。
强迫油循环水冷却,虽然散热效率高,节约材料减少变压器本体尺寸等优点。但是它要有一套水冷却系统和相关附件,冷却器的密封性能要求高,维护工作量较大。所以,选择强迫油循环风冷却。
第三章 短路电流计算
第一节 概述

第二节 短路计算的目的及假设
一、短路电流计算是变电所电气设计中的一个重要环节。
其计算目的是:
1)在选择电气主接线时,为了比较各种接线方案或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。
2)在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。
3)在设计屋外高压配电装置时,需按短路条件检验软导线的相间和相对地的安全距离。
4)在选择继电保护方式和进行整定计算时,需以各种短路时的短路电流为依据。
5)按接地装置的设计,也需用短路电流。
二、短路电流计算的一般规定
1)验算导体和电器动稳定、热稳定以及电器开断电流所用的短路电流,应按工程的设计规划容量计算,并考虑电力系统的远景发展规划(一般为本期工程建成后5~10年)。确定短路电流计算时,应按可能发生最大短路电流的正常接线方式,而不应按仅在切换过程中可能并列运行的接线方式。
2)选择导体和电器用的短路电流,在电气连接的网络中,应考虑具有反馈作用的异步电机的影响和电容补偿装置放电电流的影响。
3)选择导体和电器时,对不带电抗器回路的计算短路点,应按选择在正常接线方式时短路电流为最大的地点。
4)导体和电器的动稳定、热稳定以及电器的开断电流一般按三相短路验算。
三、短路计算基本假设
1)正常工作时,三相系统对称运行;
2)所有电源的电动势相位角相同;
3)电力系统中各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化;
4)不考虑短路点的电弧阻抗和变压器的励磁电流;
5)元件的电阻略去,输电线路的电容略去不计,及不计负荷的影响;
6)系统短路时是金属性短路。
四、基准值
高压短路电流计算一般只计算各元件的电抗,采用标幺值进行计算,为了计算方便选取如下基准值:
基准容量:Sj = 100MVA
基准电压:Vg(KV) 10.5 115 230
五、短路电流计算的步骤
1)计算各元件电抗标幺值,并折算为同一基准容量下;
2)给系统制订等值网络图;
3)选择短路点;
4)对网络进行化简,把供电系统看为无限大系统,不考虑短路电流周期分量的衰减求出电流对短路点的电抗标幺值,并计算短路电流标幺值、有名值。
标幺值:Id* = 1X*di
有名值:Idi = Id*Ij
5)计算短路容量,短路电流冲击值
短路容量:S = 3 VjI˝
短路电流冲击值:Icj = 2.55I˝
6)列出短路电流计算结果
具体短路电流计算具体见计算说明书。

第四章 电气设备的选择
1、按正常工作条件选择导体和电气
1)电压:
所选电器和电缆允许最高工作电压Vymax不得低于回路所接电网的最高运行电压Vgmax
即 Vymax≥Vgmax
一般电缆和电器允许的最高工作电压,当额定电压在220KV及以下时为1.15Ve,而实际电网运行的Vgmax一般不超过1.1Ve。
2)电流
导体和电器的额定电流是指在额定周围环境温度Q 0下,导体和电器的长期允许电流Iy应不小于该回路的最大持续工作电流Igmax

  • 220kV变电所二次回路设计与分析
    答:110KV~220KV配电装置的出线回路数为3~4回,35~63KV配电装置的出线回路数为4~8回,6~10KV配电装置出线为6回及以上,则采用单母分段接线。3、单母分段带旁路母线这种接线方式:适用于进出线不多、容量不大的中小型电压等级为35~110KV的变电所较为实用,具有足够的可靠性和灵活性。4、桥形接线当只有两台变压...
  • 升压站二次接线标准
    答:6、对于220kV单母线接线或存在母线分列运行可能的轻载变电站,在配置有220kV备自投装置时220kV母线电压互感器的二次绕组序号和空气开关编号宜按下列顺序排列:0.2(PT01、1MCBa-c)、0.5/3P (PT02、2MCBa-c)、3P(PT03、3MCBa-c)、3P(PT04) (剩余电压绕组)。7、对电压互感器的每组二次绕组,其电压并列与电压...
  • 继电保护装置及二次回路_继电保护装置及二次回路隐性故障探讨
    答:500kV升压站设计岗花I、 II双回出线,每条线路采用双套保护配置,第一套保护采用某厂WXH803A线路保护和WGQ871A过压远跳保护,第二套保护采用某某厂RCS931AM线路保护和RCS925A过压远跳保护。本工程发现7台220kV断路器测控二次回路隐蔽性故障和岗花I、II线WXH803A保护装置设计缺陷。2 保护装置设计性缺...
  • 变电站代路操作几种类型的分析
    答:在变电站的倒闸操作中,用旁路开关代主变受总开关的操作,也是变电站常用的一种代路方法,操作过程中由于涉及到差动保护电流互感器二次回路上接线方式的变化,具体讲就是要考虑代路操作对主变纵差动保护及复合电压闭锁过流保护的影响。所示为一变电站220kV系统的一次接线。正常运行方式为:2213(电源1进线)充220-4母线...
  • 发电厂及变电站二次回路目录
    答:第8章 隔离开关控制与闭锁回路 8.1-8.4 解析隔离开关控制回路的功能,以及误操作的预防措施。复习思考题,强化安全操作意识。第9章 二次设备选择与设计基础 9.1-9.5 详细讲解了设备选择和图纸设计的基本原则,确保二次回路的合理布局。复习思考题,提升设计技能。最后,附录中包含电气图形符号...
  • 变电站二次系统设计包括哪些内容
    答:一次部分是变电站内电气部分:变压器、断路器、刀闸、开关柜等;二次部分主要是:变电站自动化监控系统、继电保护及安全自动装置、调度自动化、系统及站内通讯、元件保护及自动装置、交直流电源系统、全站时钟同步系统、设备状态监测系统、二次系统图纸、辅助系统、二次设备组柜及布置等。二次系统设计就是...
  • 请电气方面的高人给一点建议:关于厂高压配电二次系统设计的方向(注重哪 ...
    答:我就是钢铁厂的,最近建设新高炉就有高压配电室,现在我们2次回路这用的是珠海万力达生产的成套综合保护装置,安装包括调试都是由厂家来做的.以前都是用继电器来做的,这样的设计首先要了解2次回路包括的东西,如果按整个工程来说变配电站二次回路包括:测量、保护、控制与信号回路部分。测量回路包括:计量...
  • 怎样看电气二次回路图内容简介
    答:在第二章,读者将学习测量仪表回路图,这部分内容旨在展示实际操作中的仪表配置和工作原理。接着,第三章至第六章分别探讨了控制回路图、中央信号回路图、输电线路继电保护装置的二次回路图、变压器保护的二次回路图,以及自动装置的二次回路图,这些都是电力系统运行中至关重要的组成部分。第七章和第...
  • 怎样学看电气二次回路图
    答:二、二次回路的重要性在发电厂或变电所中,一次设备是重要的,二次设备也是重要的。因为一次设备和二次设备构成一个整体,只有二者都处于良好的状态,才能保证电力生产的安全,尤其是在大型的、现代化的电网中,二次设备的重要性更显突出。二次回路的故障常会破坏或影响电力生产的正常运行。例如:若某...
  • 怎样能把继电保护学好?
    答:第一章 继电保护工作基本知识第一节 电流互感器电流互感器(CT)是电力系统中很重要的电力元件,作用是将一次高压侧的大电流通过交变磁通转变为二次电流供给保护、测量、录波、计度等使用,本局所用电流互感器二次额定电流均为5A,也就是铭牌上标注为100/5,200/5等,表示一次侧如果有100A或者200A电流,转换到二次...