为什么光既有波动性,又有粒子性?

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-08-03
为什么光既有波动性,又有粒子性

本视频来源于网络,如若侵权请联系删除。

如果简单用量子场论的观点,就是光子是一个无静止质量的粒子,电磁波是其统计波函数。所以光子的波性是表现在大量粒子的统计规律上面的。

德国科学家爱因斯坦(Albert Einstein,1879-1955)坚信宇宙中一切物理现象的背后都蕴藏着完整的统一性,因此,麦克斯韦的电磁学理论必须要与经典力学统一起来。爱因斯坦为了解决这一矛盾,做出了一个假设:假设有个人能够达到光的速度,与光并肩齐行,那么他就会发现静止的光。但是,根据麦克斯韦的电磁学原理,振动的电磁波是不可能观测到的,而且波也不可能处于静止状态,也就是说,宇宙中不可能存在光在静止状态的参照系,对于任何一个参照系来说,都只有属于这个参照系的时间与空间。因此,爱因斯坦确信,光在所有参照系中速度必然相同。根据这一物理法则,爱因斯坦进行了多年的探索和研究,1905年创立了狭义相对论,揭示了时间和空间的本质联系,引起了物理学基本概念的重大变革,开创了物理学的新世纪;提出了光量子论,解释了光电现象,揭示了微观客体的波粒二重性,用分子运动论解决布朗运动问题;发现了质能之间的相当性,在理论上为原子能的释放和应用开辟道路。爱因斯坦的相对论与麦克斯韦的电磁学理论完美地结合在一起,从而推动了物理学上的一次意义深远的重大革命。

1913年,丹麦物理学家玻尔(Niels Henrik David Bohr,1885~1962)以《论原子构造和分子构造》为题发表了长篇论文,为20世纪原子物理学开辟了道路。他采用了当时已有的量子概念,提出了几条基本的“公设”,提出了至今仍很重要的原子定态、量子跃迁等概念,有力地冲击了经典理论,推动了量子力学的形成。玻尔认为,按照经典理论来描述的周期性体系的运动和该体系的实际量子运动之间存在着一定的对应关系,这一对应原理成为从经典理论通向量子理论的桥梁。玻尔对各种元素的光谱和X射线谱、光谱线的(正常)塞曼效应和斯塔克效应、原子中电子的分组和元素周期表,甚至还有分子的形成,都提出了相对合理的理论诠释。

1916年美国物理学家罗伯特·密立根(Robert Andrews kan,1868~1953)发表了光电效应实验结果,验证了爱因斯坦的光量子说。

美国物理学家康普顿(Arthur Holly Compton,1892~1962)1921年在实验中证明了X射线的粒子性。1923年他发表了X射线被电子散射所引起的频率变小现象,即康普顿效应,这是近代物理学的一大发现。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,它进一步证实了爱因斯坦的光子理论,揭示出光的二象性。

1924年,奥地利物理学家泡利(Wolfgang Ernst Pauli,1900~1958)发表了“不相容原理”:原子中不可能有两个或两个以上的电子处于同一量子态.这一原理使当时许多有关原子结构的问题得以圆满解决,对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学——费米统计的基点。

法国物理学家德布罗意(Louis Victor due de Broglie, 1892-1987)由光的波动和粒子两重性得到启发,他大胆地把这两重性推广到物质客体上去。他在1923年9~10月间,连续发表三篇短文:《辐射——波和量子》、《光学——光量子、衍射和干涉》、《物理学——量子、气体动理论及费马原理》。1924年,在他的博士论文《量子论研究》中,他全面论述了物质波理论,这一理论以后为薛定愕接受而导致了波动力学的建立。德布罗意把爱因斯坦关于光的波粒二象性的思想加以扩展。他认为实物粒子如电子也具有物质周期过程的频率,伴随物体的运动也有由相位来定义的相波即德布罗意波,后来薛定愕解释波函数的物理意义时称为“物质波”。德布罗意在并无实验证据的条件下提出的新理论在物理学界掀起了轩然大波。

1925年,德国物理学家海森伯(Werner Karl Heisenberg,1901~1976)鉴于玻尔原子模型所存在的问题,抛弃了所有的原子模型,而着眼于观察发射光谱线的频率、强度和极化,利用矩阵数学,将这三者从数学上联系起来,从而提出微观粒子的不可观察的力学量,如位置、动量应由其所发光谱的可观察的频率、强度经过一定运算(矩阵法则)来表示。他和玻尔等合作,建立了量子理论第一个数学描述——矩阵力学。1927年,他阐述了著名的不确定关系,即亚原子粒子的位置和动量不可能同时准确测量,成为量子力学的一个基本原理。

1926年,奥地利理论物理学家薛定愕(Erwin Schrodinger,1887~1961)提出了描述物质波连续时空演化的偏微分方程——薛定愕方程,给出了量子论的另一个数学描述——波动力学。后来,物理学家把二者将矩阵力学与波动力学统一起来,统称量子力学。

1927年,美国贝尔实验室的戴维森(Clinton Joseph Davisson,1881~1958)、革未(Lester Halbert Germer,1896~1971)及英国的汤姆逊(George Paget Thomson,1892~1975)通过电子衍射实验,都证实了电子确实具有波动性。至此,德布罗意的理论作为大胆假设而成功的例子获得了普遍的赞赏。以后,人们通过实验又观察到原子、分子……等微观粒子都具有波动性。实验证明了物质具有波粒二象性,不仅使人们认识到德布罗意的物质波理论是正确的,而且为物质波理论奠定了坚实基础。

光的波动说与微粒说之争从十七世纪初开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。正是他们的努力揭开了遮盖在“光的本质”外面那层扑朔迷离的面纱。跨世纪的争论引出了量子力学的诞生,它是描述微观世界结构、运动与变化规律的物理科学,是20世纪人类文明发展的一个重大飞跃,引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。在现代科学技术中的表面物理、半导体物理、凝聚态物理、粒子物理、低温超导物理、量子化学以及分子生物学等学科的发展中,都有重要的理论意义。我们的现代文明,从电脑、电视、手机到核能、航天、生物技术,几乎没有哪个领域不依赖于量子论。

详细的介绍情况参考资料 里面还有关于光的折射、反射、衍射和量子论等等的发现过程,有兴趣的话不妨看看

如果简单用量子场论的观点,就是光子是一个无静止质量的粒子,电磁波是其统计波函数。所以光子的波性是表现在大量粒子的统计规律上面的。

这个问题比较难回答,这是光的一种本质性质,就象1+1为什么等于2一样。。。还有光子的内部结构到底如何?这个问题就更恐怖了。。。恐怕没有人能大出来了。

首先光是一种电磁波,电磁波具有波动性又具有粒子性。但这里的粒子并不是我们平时所说的实物粒子——如原子、中子等,而是称为“光子”。说光具有粒子性是一种形象说法,按照光量子假说:在空间传播的光不是连续的,而是一份一份的,每一份叫一个光量子,简称光子,光子的能量E跟光的频率V成正比,即E=HV。也就是说,将这一份一份的能量形象的视为“粒子”。所以这里所说的粒子并不是实实在在的有内部结构的粒子,而是一份一份的能量。

本视频来源于网络,如若侵权请联系删除。



  • 为什么光既有波动性,又有粒子性?
    答:而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,它进一步证实了爱因斯坦的光子理论,揭示出光的二象性。1924年,奥地利物理学家泡利(Wolfgang Ernst Pauli,1900~1958)发表了“不相容原理”:原子中不可能有两个或两个以上的电子处于同一量子态...
  • 为什么光既有波动性,又有粒子性
    答:光在发生干涉和衍射现象时,表现出来的性质更接近波的性质,所以说光具有波动性。光照射在金属表面上发生光电效应时,表现出来的性质更接近实物粒子的性质。光电效应中,光表现为一颗一颗的光子(粒子)打在金属表面上,一份一份的能量即被电子吸收。所以说光具有粒子性。光在不同的实验中显现出的性质有...
  • ...一种波同时也是一种粒子,又说光具有粒子性(波动性)但不能说就是粒 ...
    答:光是一种独特的物理现象,它展现出波粒二象性。这意味着光既具有波动特征,也表现出粒子特征。在某些实验条件下,光的波动性得以显现,例如在双缝干涉实验中,光会产生干涉图案,这表明光可以像波一样叠加和干涉。而在其他实验中,如光电效应,光则表现出粒子性,光子(光的粒子)能够以一定能量撞击电子...
  • 为什么光是波又是粒子?
    答:光具有波粒二象性。波粒二象性指的是所有的粒子或量子不仅可以部分地以粒子的术语来描述,也可以部分地用波的术语来描述。这意味着经典的有关“粒子”与“波”的概念失去了完全描述量子范围内的物理行为的能力。爱因斯坦这样描述这一现象:“好像有时我们必须用一套理论,有时候又必须用另一套理论来描述...
  • 如何理解光既是波又是粒子
    答:量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,它们能够像波一样互相干涉。同时,波函数也被解释为描述粒子出现在特定位置的机率幅。这样,粒子性和波动性就统一在同一个解释中。
  • 如何理解光的波动性与粒子性
    答:光具有波动性:光的折射、衍射和干涉等;光属于电磁波(电磁辐射),可在真空中传输。光具有粒子性: 光电效应;光由光子(光量子)组成,光子具有能量,光子的能量与光的频率或波长有关。光的粒子性和波动性的区别 波需要大量粒子作用 电磁波具有波粒二象性,当光子只有一个或少数时表现出粒子性,当光子多...
  • 光的波动性和粒子性是怎样的关系呢?
    答:光的粒子性和光的波动性是一对矛盾,同时又相互联系,是对立统一的关系。任何事物都是对立和统一的结合体,对立和统一是矛盾双方所固有的两种属性,对立性表现为对立面之间具有相互排斥,相互否定的性质,统一性表现为对立面之间具有相互依存、相互渗透、相互贯通的性质。矛盾的统一性和对立性是相互联结的。
  • 光的波粒二象性
    答:一、光的波动性 光的波动性可以理解为光在传播过程中会产生振动,形成波,而波的性质可以类比水波或声波。二、光的粒子性 光的粒子性则可以理解为光是由许多粒子组成的,每个粒子都可以被视为一个独立的实体。三、光的波粒二象性体现 在物理学中,光的波粒二象性可以通过光的干涉、衍射等现象来体现...
  • 光的粒子二象性指的是什么
    答:粒子性:光的粒子性是指光在与物质相互作用时表现出粒子的特性。例如,在光电效应中,光可以将能量以量子的形式传递给电子。这个量子被称为光子,是光的最小能量单位。光子具有能量和动量,但没有质量。波动性:光的波动性是指光在传播过程中表现出波的特性。例如,当光通过两个相近的狭缝时,它会...
  • 光有波的性质,也有粒子的 性质?这是怎么回事啊.?
    答:光的波粒二象性光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。光学的任务是研究光的本性,光的辐射、传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的机械作用和光的热、电、...