相对论不允许超光速,那量子纠缠和引力波超光速了吗?

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-02
量子纠缠超光速,相对论不允许超光速,两者矛盾吗?

不矛盾,因为这两者所处的环境不同,量子纠缠不会传递信息,而且相对论说明的是物质和能量不允许超过光速。

很多朋友在举例超光速案例时,切伦科夫辐射是必须举例的对象,但它是介质中的超光速现象,并没有在真空中超过光速!当然很多朋友又会举例量子纠缠在任何状态下都能超光速,而且就是实时的,远不止光速的一万倍!果真是这样吗?

量子纠缠到底是什么东西?它真超光速了吗?
量子纠缠最早应该追溯到爱因斯坦和波尔之间的一场"战争",1905年爱因斯坦以一篇光电现象的论文确立了和普朗克一样的量子力学的宗师地位,但比较耐人寻味的是无论是爱因斯坦还是普朗克,他们都走向了极端保守的一面,而爱因斯坦则走得更远一些,毕生都想让量子力学回归经典的因果律,因为量子力学的发展,推导出了匪夷所思的违反因果律的结论,为此他提出了一个又一个思想实验,试图将已经疯狂的量子世界重新回归经典!

从光箱实验到EPR实验
1930年第六届索尔维会议召开,爱因斯坦提出了一个光箱实验,试图精准打击海森堡的公式△E×△t>h/2π不成立,这是量子力学的根基海森堡不确定性原理的数学描述,爱因斯坦试图通过直击要害完成量子力学回归,但很可惜他忘记确认一点,在光箱实验中他居然忘记考虑了相对论的红移效应,结果被波尔击溃,简直就一败涂地!

1935年3月爱因斯坦和他的同盟军波多尔斯基(Boris Podolsky)和罗森(Nathan Rosen)一起,发表了一篇《量子力学对物理实在的描述可能是完备的吗?》,提出了一个一直到现在仍然在持续发酵的实验:
一个不稳定的大粒子衰变成两颗小粒子A和B,这两颗粒子会有两种可能的自旋方式,假设它是左旋,那么另一颗粒子必定是右旋,但量子力学认为,在我们没有观察它之间,它们的状态就是不确定的,只能用一个波函数来描述它们!
但当我们观察粒子A时,它的波函数会瞬间塌缩,随机选择了一种左旋或者右旋,那么为了总体守恒,另一颗粒子必定是另一种自选方式,那么当两颗粒子在相隔数万光年时,两者是如何做到相互通信的呢?
所以爱因斯坦认为,信号不可能超过光速传递,因此粒子A和粒子B在分开之前的状态就已经确定了,后来观测到的只是这种确定状态的信息而已!
这就是三位大神的名字首字母命名的经典实验EPR佯谬!对于波尔这些量子力学的支持者来说,根本不成问题,因为他们的解释是两颗粒子在观测以前,无论它们相距多远,都是处在叠加态,也就是跟两者距离无关,但显然这个解释并不能令爱因斯坦服气!

而当时技术条件有限,爱因斯坦就带着这样对温暖的经典世界无比怀恋和对量子力学的愤愤不平中在1955年4月18日去世。

量子纠缠超光速了吗?
EPR所设想的那种纠缠难以实现,因而难以用实验来检验。尽管量子力学界从来都不会认为波尔的观点是错的,但贝尔不等式的提出有了以实验检验真理的方式,大家肯定是愿意围观凑个热闹了!
1969年,Clauser等人改进了玻姆的EPR模型后,在伯克利、哈佛和德州进行了一系列初步实验,出乎贝尔的意料的是,除了一个实验以外,其它实验都指向了量子论预言的结果!

【贝尔不等式实验验证示意图】
法国奥赛理论与应用光学研究所的阿莱恩·阿斯派克特带领的团队在1982年代做了一个著名的实验,这就是被称为二十世纪影响最大实验之一的阿斯派克特实验,结果是爱因斯坦输了,同年12月阿斯派克特团队的论文发表在了《物理评论快报》上。

所以量子纠缠根本就无需用光速来衡量,就像哥本哈根诠释认为的那样,在被观测以前,两颗纠缠态的粒子即使在相距再远的距离上,比如宇宙的两端,它仍然被看成是一个叠加态,而这个叠加态并不是以距离远近来形容!所以当观测任何一颗粒子时,观测的是这个叠加态,而不是单颗粒子。

宇宙中真的没有超光速的传递吗?
其实还真有,德布罗意提出的德布罗意波就可以远超光速,而宇宙的膨胀也能超过光速,但无一例外的是两者有一个共同点,就是无法传递信息,这也是狭义相对论中所要表达的光速不可超越的真正含义!

光速就是我们这个宇宙的天花板,但即使达到光速我们也无法跨越宇宙。

在爱因斯坦建立狭义相对论以后,就从狭义相对论里得到了有质量物体无法通过有限加速达到光速的推论,另外也得出无质量物体必定以光速运动,基于这两点就能推论出能量和信息传递速度也不能超过光速,可以说能量和信息传递不能超光速就包含了前面两个推论,因此通常我们提到狭义相对论不能超光速时,只要理解成能量和信息传递不能超光速就可以了。

那么量子纠缠和引力波超光速了吗?这其实是两个问题,我们必须分开讨论,因为两者的性质完全不同。

量子纠缠

量子纠缠最早是由爱因斯坦提出的,用以质疑玻尔为首的哥本哈根学派对波函数坍缩的概率解释。他从哥本哈根学派认为在被测量到之前,微观粒子不存在确定的状态出发,提出了这么一种情况:

通过特殊的方式,我们可以得到一对状态(量子态)互相纠缠的光子,为了方便理解,我们可以假设这对光子的自旋方向一个是上旋,一个是下旋。我们可以把这对光子通过光路分开到一定的距离,比如1光年。然后对两者分别进行测量。根据哥本哈根解释,在其中一个光子被测量到的那一刻,状态才会确定,也就是当我们在A点测量光子a时,它才随机坍缩到一个自旋态,比如为上旋,那么基于纠缠的特性,在1光年外的B点处的光子b就应该会是下旋。所以当我们通过以纠缠光子的发射点作为标准进行时间校准后,在相隔1光年的A、B两点同时进行测量,那么将会分别测量到一个上旋和一个下旋的光子,而肯定不会同时测量到两个上旋或两个下旋的光子。

(量子纠缠)

那么问题来了,此时a、b两个光子相距已经有1光年远了,它们是怎么做的瞬间随机坍缩到一个状态而又能保证互为相反的呢?如果a、b光子确实是被测量那一刻自旋态才被确定并且完全随机的话,那a、b之间就必须存在某种关联让双方知道对方的状态,而这种关联是瞬时的,也就是超光速的,这就违背了狭义相对论里的信息传递不能超光速了。

于是爱因斯坦以此向玻尔为首的哥本哈根学派发起挑战:是放弃狭义相对论还是放弃哥本哈根诠释?

在爱因斯坦看来,如果要承认狭义相对论的正确性,那么互相纠缠的光子应该在分开的那一刻状态就已经确定,这样无论它们之后分开多远,都能在测量时得到相反的自旋态。所以他认为哥本哈根学派认为光子的状态在被测量时才确定的说法是错误的。

(爱因斯坦和玻尔)

然而玻尔并不这么认为,他坚持哥本哈根诠释的正确性,他指出,在测量前不存在两个光子的波函数,而是只有一个波函数,只有当其中一个光子被测量到时,这个唯一的波函数才随机坍缩为确定的两个光子。既然只有一个波函数,随机坍缩的两个光子的状态自然是同时确定的,但这不需要在两个光子间传递信息,因为坍缩前只有一个波函数。这其实跟单个光子的波函数坍缩是完全一样的,单个光子在被测量前波函数弥漫在整个空间任何可能的地方,但一旦测量,它就从全空间坍缩到一个确定的位置,并且是唯一的位置,它无需告知别处所有可能出现的地方的“自己”不要出现。

在这种解释里,两个光子之间是不传递信息的,而由于其坍缩前无法确定状态,因此光子本身也不携带信息,而由于测量即坍缩,因此也不能提前录入信息。既没有传递信息,也没有携带信息,也不能录入信息,量子纠缠自然就根本不存在超光速传递信息了。

引力波

量子纠缠没有超光速那引力波呢?这个问题分两种情况。

首先引力波传播速度等于光速这是广义相对论得出的结论,虽然它其实是利用光速常数c强行规定的,但是在多次引力波事件的测量中已经证明,引力波传播速度就是光速!特别是双中子星合并引力波事件,由于引力波和多波段电磁波接收到同一信号,因此已经非常确定引力波传播速度与电磁波波速,即光速一致!

(双中子星合并)

但是在引力波问题上还存在另一种情况,就是宇宙膨胀。

我们知道根据天文观测,宇宙正以大约70km/s/Mpc的速度膨胀,这就导致宇观尺度下两点间的距离在渐渐拉大,因此在引力波源处发出引力波后,引力波沿空间传播过程中,空间距离被拉大了。距离变了那引力波速度怎么算?这问题其实跟宇宙膨胀下的光速是同一个问题。很显然,如果忽略掉宇宙膨胀本身的距离增加问题,宇观尺度下的引力波和光速都将下降,也就是都将低于真空光速常数c。这是很容易理解的,比如说一个距离地球1亿光年的双中子星发生碰撞,那么伽马射线爆和引力波将以光速向地球传播,这将需要1亿年时间,然而在这1亿年的传播过程中,双中子星与地球之间的空间在不断膨胀,距离在不断增加,那么它还能在1亿年时到达地球吗?显然不可能,不然就超光速了。实际情况是引力波和伽马射线暴都将超过1亿年后才能到达地球,如果此时我们依然按照静态宇宙的距离1亿光年来计算,那引力波和伽马射线暴都将低于光速了……

但实际上当我们引入考虑了宇宙膨胀的距离定义,问题就迎刃而解了,引力波和伽马射线暴依然刚好就是光速c。

(宇宙膨胀导致空间距离增加)

结论

综上分析,量子纠缠和引力波都没有超光速,量子纠缠压根不存在速度问题,它既没有能量传递,也没有信息传递。而引力波速度则严格等于光速,这已经在天文观测中得到严格证实了。



量子纠缠和引力波没有超光速。因为它们既不能传递信息,也不能录入信息,也不能携带信息,所以它们自然也就不能超光速了。

这是因为相对性对速度的限制是有限的。恒定的光速并不禁止所有速度。这意味着有效的信息传输速度不能超过空间中的光速。因此,物体在空间中的移动速度不能超过光速。

量子纠缠的传递速度是超光速,或者说根本就没有传递过程,因为量子纠缠效应就是瞬时的,完全无视空间距离,而引力波的传递速度是光速。

在爱因斯坦建立狭义相对论以后,就从狭义相对论里得到了有质量物体无法通过有限加速达到光速的推论,另外也得出无质量物体必定以光速运动,基于这两点就能推论出能量和信息传递速度也不能超过光速,可以说能量和信息传递不能超光速就包含了前面两个推论,因此通常我们提到狭义相对论不能超光速时,只要理解成能量和信息传递不能超光速就可以了

  • 相对论不允许超光速,那量子纠缠和引力波超光速了吗?
    答:在爱因斯坦建立狭义相对论以后,就从狭义相对论里得到了有质量物体无法通过有限加速达到光速的推论,另外也得出无质量物体必定以光速运动,基于这两点就能推论出能量和信息传递速度也不能超过光速,可以说能量和信息传递不能超光速就包含了前面两个推论,因此通常我们提到狭义相对论不能超光速时,只要理解成能量...
  • 都说光速不可超越,宇宙膨胀和量子纠缠为啥都比光速快?
    答:光速为每秒299792.458千米,代表了宇宙间最快的速度,是不可超越的。光速不可超越源自于爱因斯坦的狭义相对论,狭义相对论认为,任何没有静止质量的物体都会以光速进行运动,光子就没有静止质量,所以它就以光速运动。而对于拥有静止质量的物体而言,不论它的质量是多少,都只能无限接近于光速,而不可能达...
  • 量子纠缠超光速,相对论不允许超光速,两者冲突吗?
    答:相对论并非不允许超光速,而是不允许物质、能量、信息的传播速度超过光速。在量子纠缠的超光速中,并不存在物质或能量的传播速度超过了光速,而且纠缠本身并不传递信息,信息的传递并没有超过光速。
  • 量子纠缠的原因,与相对论违背的解释.
    答:量子纠缠是指一种超过光速的远程相关性,但不能用于传递信息,即相互之间并无因果关系,因此与相对论不冲突,但是如果没有相对论,量子纠缠就不是那么奇怪了。超过光速的远程相关性,其实并不只限于量子纠缠,比方说,当你在北京时,你一定同时不在上海,这个关系就是超光速的,它不是通常意义上的因果...
  • 光速无法被超越,其根本原因是什么?
    答:但宇宙中也存在着一些超光速现象,并且也没有违背相对论,因为在相对论所中描述的”光速不能被超越”有个前提条件,那就是有质量的物质不能达到光速。一、量子纠缠 指的是“A”和“B”两个粒子互为纠缠状态,如果将这两个粒子放置在相距几百亿光年的宇宙两端,只要...
  • 量子纠缠和相对论冲突吗?
    答:只有质点的速度超光速才和类空世界线的定义一致。其他形式定义的速度超越光速不是相对论所禁止的。通过这个例子,也就容易理解量子纠缠现象了,因为量子纠缠中所谓的超距作用,实际上是波函数坍缩的瞬时性导致的,这里的速度和质点的速度定义并不一致。而且也并没有导致因果性被破坏,所以实际上这并不存在...
  • 量子纠缠的速度是光速的一万倍,这样违反相对论吗?
    答:比如说,量子纠缠的“超距速度”,这是一种不论何时何地,都会“瞬间传送”的速度,可以无视距离带来的影响。说白了,它甚至可以一万倍,一千万倍于光速。那么,这是不是和狭义相对论不兼容呢?毕竟,相对论之所以成立的基石,就是“光速不可逾越”。爱因斯坦认为,光...
  • 量子纠缠的速度是光速的10000倍,这是否违反相对论呢?理由是什么?_百度...
    答:量子纠缠是信息的纠缠,比如:红光与蓝光纠缠会形成紫光,以紫光为密匙,当收到红光马上就能知道传送的信息是蓝光。量子纠缠根本就不存在速度这个参数,也无就不存在量子纠缠速度是光速10000倍的问题。狭义相对论是迷信,量子纠缠速度也是迷信,两个都是迷信,不存在谁违反谁的问题。提问:上帝与佛祖打架,...
  • “光速不变”是什么意思,是什么限制了超光速现象?
    答:但是空间本身的膨胀是不携带信息的,量子纠缠效应也是。光速不可超越,具有一定的前提,超光速也并非不存在。最后我们来总结一下。光速不变说的是:光在任何参考系下的速度都是常数c。狭义相对论和因果律不允许信息的传递速度超光速。超光速现象之所以存在,是因为它们没有违背狭义相对论的前提条件。
  • 有人知道量子纠缠是怎样超越空间和时间达到瞬间感应的?有什么依据吗...
    答:所以说相对论并并不是不允许超光速,仅仅不允许有动能或信息的快速传播超出光速,而在量子通讯中并没有发生信息的超光速传送,换句话说量子纠缠的超光速是没有违反相对论的。量子力学迄今仍是物理中最精准的基础理论。因为量子纠缠的转变是偶然性的,不会受到操纵的,因此令人琢磨不透其实质。间距在量子...