生物圈对地球表部圈层的作用

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-30
生物圈与地球表部其他圈层的相互作用

整个生物圈都渗透在大气圈、水圈和岩石圈之间;生物圈与大气圈、水圈和岩石圈之间存在着复杂的相互作用关系以及物质和能量的交换与循环。这里仅简要列举几个方面。
(一)大气圈、水圈及岩石圈环境对生物圈发展的制约与促进作用
大气圈、水圈及岩石圈构成了生物圈中各种生物最基本的无机生存环境,它们供给生物所必需的水分、各种营养物质及矿物质等。这些无机环境的差异对生物圈的繁盛、发展具有很强的限制性或促进性作用;而生物对其生存环境则具有很强的依存性和适应性。一般来说,生物的种类、数量、形态结构及生理机能等与它所生存的一定环境条件是相适应的;有利或不利的环境条件会对生物的繁盛与发展起到促进或制约的不同作用。大气圈、水圈在太阳能的驱动下而发生运动、循环,形成风、雨、流水、潮汐、气温变化、干湿变化等;它们与岩石圈表面的自然地理相结合,使不同地区形成了不同的气候与地理环境。因此,生物长期进化发展的结果,在地理与气候条件不同的地区往往形成了不同的生物群落;而在地理与气候条件相似的环境一般都具有相似的生物群落。例如,在不同地区的沙漠生物群落中,虽然生物种类并不相同,但它们都具有许多相似的特征:种类和数量较少、耐干旱、具有防止或减少水分蒸发的能力或行为等。我国云南西双版纳有热带雨林生物群落,印度、南美等地也有,它们的地理、气候条件(如温度、湿度等)相似,生物特征也很相似(生物繁茂、种类多、数量较多、喜湿性等)。根据地理与气候环境不同,生物群落可分为陆生和水生两大类。陆生生物群落又包括热带雨林、亚热带常绿阔叶林、荒漠、温带落叶阔叶林、温带草原、寒温带针叶林、寒带苔原等群落;水生生物群落包括海洋生物群落(滨海、浅海、半深海-深海等)和淡水生物群落(河流、湖泊、沼泽等)。
(二)生物圈对大气圈、水圈的改造与影响
地球与太阳系中其他行星的最显著不同是地球上有繁茂的生命。正是地球上生命的发生和发展,才使大气圈能有今天这样适合于人类生存的大气环境,这其中主要是得益于绿色植物的作用。大气中游离氧气的积累、臭氧层的形成、二氧化碳的降低、气温的调节等都有动植物的贡献。地球演化历史研究表明,冥古宙时期的早期大气中基本没有或极少有游离氧气存在,而CO2 含量很高(除H2 O汽、N2 以外);太古宙时期随着海洋中藻类植物的出现,光合作用使O2 开始逐渐缓慢积累;元古宙时期海生藻类植物繁盛,光合作用生产的O2 量快速增加,成为大气中O2 含量积累增长的最主要阶段(图10-4)。而大气中自由氧的增加与CO2 的减少大体是同步的,植物大发展与大气中的CO2 含量通常呈反相关关系。现今大气中各种主要成分的含量基本上趋于动态平衡,这主要是生物圈(植物和动物)-水圈-岩石圈之间排气、固气作用所达到的相对平衡状态。

图10-4 大气圈中氧气和二氧化碳随时间的变化

(据陶世龙等,2010)
生物圈参与并影响了水圈的运动与循环。水是生物圈中生物体维持生命的必需物质,生物体通过从水圈、大气圈中吸收水分,再通过新陈代谢和生命系统内部的运动排出水分到大气圏和水圈中。一般来说,水被生物体吸收进去并留在生物体结构中的并不多,但经过生物体转运的水量却很大,如植物的根部从土壤中吸收1000 g水,大约只有1 g水被植物用在组织的建造上,99.9%的水通过蒸腾作用进入大气圈,它对大气的湿度有调节作用。生物圈中良好的植被(特别是林地)常可大大减缓地表水的运动速度,延长地区性水体的循环时间,有利于水土保持、防止洪涝灾害和缓解干旱缺水问题。
(三)地球表层的全球碳循环
碳是组成生命组织的基本物质,也是近地表各种地质作用中最活跃的化学元素之一。碳在地球表层的生物圈、大气圈、水圈和岩石圈之间的运动与转换是地球上生命活动及多种地质作用的重要过程与结果,也是地球表层各圈层相互作用、影响与连接的典型实例。
全球表层碳的总含量约为1023 g,其中绝大部分以有机化合物(1.56×1022 g)和碳酸盐(6.5×1022g)的形式存在于沉积岩中,余者主要以CO2, , 等形式存在。全球近地表可供利用和循环的活动碳源的总含碳量约为4×1019 g。大气中、土壤中及溶解在河流、地下水、湖泊和海洋等水体中的CO2 是可供生物圈利用的主要无机活动碳源;其中,溶解在海洋中的无机碳量大约是大气中的56倍。土壤是陆地上最大的碳源,而大气中碳的含量比全球植物活体中碳含量的总和还多。
地表植物一般通过对CO2 的光合固碳作用而捕获太阳能为生物圈提供能量,同时使得大气中的碳进入生物圈,并向大气提供氧气;而各种动物则通过食物链与新陈代谢作用吸收、贮存和排出含碳物质。在陆地的碳循环过程中,大气中的CO2 为植物所固定,且大部分通过生物的呼吸和分解作用而从植物、动物或土壤释放到周围环境中去;有些储存在有机体中被长期埋藏。海洋生物利用海洋中所溶解的CO2 进行光合固碳作用,其中一部分生物残体分解释放出CO2;另一部分形成生物碳酸盐沉积,与无机碳酸盐沉积一道固定在岩石圈中,直到受地质作用被抬升到地表经风化作用而重新释放出CO2。大气圈与水圈之间主要通过CO2 的溶解与挥发作用进行碳循环,而岩石圈与水圏、生物圈和大气圈之间主要通过风化、剥蚀、搬运和沉积作用进行碳循环。此外,构造运动、岩浆作用与变质作用(如火山、断层、地震、温泉、热液等)所释放的 CO2,自然火灾、人类活动(如化石燃料燃烧、水泥制造、森林破坏等)对近地表CO2 的含量及碳循环过程也有重要影响(图10-5)。

图10-5 地球表层的碳循环示意图

(据陶世龙等,2010)
(四)氧及其他化学组分的循环
氧是地球表层最丰富的物质,氧元素的克拉克值在地壳中占第一位(高达46.6%),水圈中水分子内氧元素的质量占比更高。但游离状态的氧气主要存在于大气圈内,在低层大气中氧气所占的体积约为21%;还有一部分氧气溶于水圈中及生物体内。由于在H2 O分子和CO2 气体中都存在氧元素,所以全球碳循环与水的循环过程实际上也是氧的循环过程。但现今大气圈中游离状态的氧气主要是绿色植物光合作用的贡献,它们吸收CO2并排出O2;但动物则相反,它们通常吸收O2 并排出CO2。所以,O2 主要通过生物体的作用在大气圈、生物圈及水圈之间循环。氧也是地球表层化学性质十分活跃的元素,它积极参与了各种地质作用过程,使之在岩石圈与外部圈层之间也发生循环。地表广泛发生的氧化作用会消耗氧气,使游离氧成为化合物进入岩石圈;而岩石圈中的氧元素则主要通过变质作用(如脱水、脱碳反应等)、岩浆作用(如火山挥发分)等以H2 O或CO2 等形式排出,再通过植物的光合作用形成氧气。由此可见,在游离氧的循环过程中植物的光合作用是至关重要的。
实际上,地球表层的各种物质都在借助地球系统层圈相互作用的能量流动而发生不同规模、不同程度的循环,从化学组分的角度来说可统称为地球化学循环,当有生物作用的参与时又可称之为生物地球化学循环。现已知的地球表层的化学元素中绝大部分都在生物体内存在,其中氢、氧、碳、氮、磷、硫等是有机质的基本化学组分,这些化学组分的生物地球化学循环也是最为显著的。

自然地理-地球的圈层结构

生物圈的形成是地球外部圈层(大气、水、生物与岩石圈表层)互相作用的产物,反过来,生物圈也可对地球外部其他圈层产生巨大的作用,使其物质成分或面貌发生变化。

1.生物圈对大气圈的作用

地球与太阳系中其他行星的一个非常显著的不同是地球上有繁茂的生命,也就是地球上生命的发生和发展,才使大气圈能有今天这样适于人类生存的特点,主要靠绿色植物起了作用。大气中氧气的累积、臭氧的形成、二氧化碳的降低、气温的调节等都有动植物的贡献,如地球的历史记录表明,植物大发展与大气的CO2含量呈反相关系(图7-5)。现在大气中各种成分趋于平衡的现象是靠植物动物岩石圈固气与排气三者之间所达到的相对平衡。

图7-5 大气圈中氧气和二氧化碳随时间的变化

人类,作为生物圈的组成部分,特别是在建立起现代工业后,对大气圈的影响日益显著;把大量二氧化碳和多种有害、有毒气体与粉尘排入大气,污染大气环境,就是一种恶劣的行径。幸而自然界的植物对大气中粉尘及有害气体有清洁作用,否则我们现今的大气早就变得污浊而不适宜于人类生存了。控制人类本身对环境的污染和利用生物来改善环境,也已成为当今之要务。

植物中如乔木和灌木相结合的林带的减尘率达95.7%,一些植物还有吸收某些有害物质的特殊功能,刺槐、柽柳能吸收氯气,柳杉林吸收二氧化硫,茶树、山茶可除去氟化氢,杨树和桑树叶对铅粉尘有较强的吸收作用等等。因此,控制城市大气污染的一个重要途径就是要发展绿地。植物不仅吸收了城市大气中的很多有害成分,而且还能释放出大量的氧气,使大气变得清新,而有利于人体健康。

植物在生长过程中,通过光合作用,把太阳能转化为化学能,可减少地面的长波辐射,从而降低大气的温度,据观测,夏季草坪上的气温与深色的屋顶的温度可差20℃。不仅如此,植物还能蒸腾大量的水分,增加大气的湿度,据观测一棵普通的白杨在夏季白天每小时蒸腾25kg水,一亩阔叶林一年可蒸腾300多吨水,使大气变得湿润。所以植被茂密的地区,气温变化相对缓慢,起到“温床”的作用。所以利用生物来改善环境是十分必要的。

2.生物圈对水圈的作用

生物对水圈的依赖性很大,可以说有水才有生命,反过来,生物在水圈中这种无所不在的广泛分布,对水圈也必然会产生重大影响:一是影响一些元素在水中的迁移和沉淀过程;二是影响水圈的运动和循环。

在自然界中,水对金属、非金属元素的溶解作用、离子交换作用和沉淀作用,并不单单是纯化学作用,常见的是与生物活动密切相关的生物化学过程。放射虫、硅藻等生物吸收海水中的二氧化硅,成为影响海水中二氧化硅含量的主要因素,每年生物活动可从大洋中沉淀出5×1014g的二氧化硅。浮游生物每年可以把大洋中2×1011g(20万吨)的铅沉淀下来,相当进入大洋中铅总量的一半。在浅海底大量形成的碳酸盐堆积(其中的碳酸钙成岩后就叫石灰岩;碳酸钙镁成岩就叫白云岩),大多是在生物化学作用下形成的。在元古宙和古生代,这种作用曾使大气圈与水圈中的CO2大量地被固定到岩石圈中。至于在浅海深部堆积的磷酸盐,则更主要依靠生物体的吸附及其遗体埋藏而富集起来的。大洋中金属的浓度一般很低,远未达到这些金属元素沉淀的饱和浓度值。然而,由于多种杆菌、鞘铁菌和一些纳米级的超微生物的生理作用,使锰、铁、铜、镍、钴等多种金属元素被吸收到生物有机体组织内,在生物死亡后,经过进一步的溶解和再凝聚,从而逐渐在洋底形成以锰为主的结核。它们构成了人类极为宝贵的、潜在的金属资源。

生物体中的水通过被吸收和排除以及在生命系统内部的运动,参与水圈的循环,被吸收进去并留在生物体中的并不多,但经过生物体转运的水量却很大,如植物的根部从土壤中吸收1000g的水,大约只有1g水被植物用在组织的建造上,99.9%的水通过蒸腾作用进入大气,它对大气的湿度有调节作用。因此,城市里的绿地不仅有降温防暑的作用,而且有湿润空气之功效。林带可大大地减缓地表水的运动速度,延长循环时间,也是解决一些地区缺水的一个途径。

水生生物本身的繁殖与死亡,对水圈也是一种影响,对人来说可以有利,如有的生物可以净化水质;也可以有害,如某些藻类大量快速繁殖形成的“赤潮”危害。

3.生物圈对岩石圈的作用

生物圈能对岩石圈发生破坏作用,在生物风化作用中很容易看到这个过程。中国有句成语“千里之堤,溃于蚁穴”,就说明人们对此早有认识。这种生物风化作用过程,既有机械的(物理的),也有化学的作用。植物的根系深深地扎入岩石的缝隙,随着植物的生长,根系壮大膨胀,向周围的岩石施加压力,使岩石破碎崩解,就是一种物理作用(称为根劈作用);生物分泌出来的或在死亡后腐烂产生的有机酸和腐殖质,对岩石腐蚀,就是一种化学作用。有些微生物还能分解像铝硅酸盐那样难以溶解的矿物,有些细菌能吸收铜、铁、金,促使闪锌矿、黄铁矿氧化等。马尾藻吸收金元素,最多可达到细胞干重的42%。

生物作用,是影响土壤形成的重要因素。通常所说的土,不一定都含有机质或腐殖质。而土壤则专指含有有机质或腐殖质的那部分土层,是经过生物风化作用形成的。只是因为存在生物的活动,才使有机质和腐殖质在土层中富集、分解,形成具有肥力的土壤。各处土壤厚薄的差别(从几厘米到十几米都有),也是取决于生物风化作用的强弱。当然也要受到气候、地形、水等其他因素的影响,不过生物在里面起到了关键性的作用。

土壤的形成,有利于植物的生长,植物对土壤又能起着保护的作用,同时也保持了水分。得到植物覆盖的陆地表面,流水或风对那里的土壤都难以侵蚀。因为植物的根系对松散土层有稳固的作用;植物的枝叶能阻滞风和流水的运动。多年观测的结果表明,裸露的地表比林地的水土流失量可以大100倍!这样生物又保护了岩石圈表层的稳定。而水土留下来后,植物更为繁茂,土壤能变得更加肥沃,大气降水也会大量渗进土壤和岩层中。水、土壤(包括岩层)、大气和生物之间物质和能量的流动,在这里形成了良性的循环,此时生物可谓得其所哉,蓬勃发展。

绿色植物是生物圈这个系统中获得能源的起点,这些能量主要来自太阳,也会有少量来自地球内部。这些能量通过食物链一级一级地转换下去,成为维持生物圈存在的根本动力。而且也会和其他圈层转换,大量被绿色植物固定下来的碳和微生物遗体所造成的大量堆积,埋到岩石圈中就可成为煤、石油和天然气等化石燃料。

生物作为物质和能源在地球外部圈层之间循环转换的重要枢纽,在碳的循环上表现得最清楚(图7-6)。

图7-6 地球表层的碳循环

生物圈不仅对岩石圈表层发生破坏作用,还能使某些有用元素或化合物在岩石圈内富集起来,形成对人类有用的矿产,这就是生物成矿作用。除前面已经提到在浅海底堆积的碳酸盐、硅、磷等外,在嗜铁细菌的作用下可形成鲕状或肾状赤铁矿堆积,嗜铜细菌的作用可造成沉积铜矿层。浅海底形成的黑色岩系,常在浮游生物的参与下,造成磷、钒、铀、钼等有用元素的聚集。至今还是人类生活中最重要的能源———化石燃料(石油、天然气和煤)则更主要是靠生物(微生物或植物)遗体的埋藏在岩石圈上层聚集成不同的碳氢化合物或碳。近年来,更注意到海底扩张带热水溶液喷口附近,在250~360℃的温度和30MPa压力的条件下,仍有大量微生物存在,它们以摄取含多种金属(Fe、Mn、P、S等)的流体为食料,大量双壳类软体动物又以这些富含金属元素的微生物为食料。上述生物死亡后,堆积在喷口附近形成一些金属硫化物矿床。总之,生物成矿作用近年来已经成为矿床形成过程研究中一个重要的前沿性方向。





  • 生物圈对地球表部圈层的作用
    答:生物圈的形成是地球外部圈层(大气、水、生物与岩石圈表层)互相作用的产物,反过来,生物圈也可对地球外部其他圈层产生巨大的作用,使其物质成分或面貌发生变化。 1.生物圈对大气圈的作用 地球与太阳系中其他行星的一个非常显著的不同是地球上有繁茂的生命,也就是地球上生命的发生和发展,才使大气圈能有今天这样适于人...
  • 生物圈与地球表部其他圈层的相互作用
    答:地表植物一般通过对CO2 的光合固碳作用而捕获太阳能为生物圈提供能量,同时使得大气中的碳进入生物圈,并向大气提供氧气;而各种动物则通过食物链与新陈代谢作用吸收、贮存和排出含碳物质。在陆地的碳循环过程中,大气中的CO2 为植物所固定,且大部分通过生物的呼吸和分解作用而从植物、动物或土壤释放到周围环境中去;有...
  • 地球外部圈层的组成及意义
    答:1、岩石圈:岩石圈是地球表面的最外层,主要由固体岩石构成。它是地球的地壳和上地幔的顶部,具有支撑和保护地球内部结构的作用。岩石圈通过其强度和稳定性,维持了地球的地形和框架结构,为生命活动提供了稳定的基础。2、大气圈:大气圈是地球表面的一层薄薄的气体,它由气体和悬浮物质组成。它是地球生...
  • 地球四大圈层介绍
    答:首先,大气圈是地球最外层的一层,它由各种气体所组成,这些气体不仅保证了地球生命的呼吸,还起到了调节气候的重要作用。大气圈内的臭氧层能够吸收和过滤掉大部分的紫外线和X射线,保护了地球生物的DNA不受损害。同时,气压、温度等因素也会产生重要影响,直接或间接影响着地球上的生命活动。其次,水圈是...
  • 简析地球各圈层间的相互关系
    答:1、能量传递与物质循环:地球的各圈层通过能量和物质的传递与循环,保持了地球生态系统的稳定性和持续性。例如,太阳能通过大气层进入地球,并驱动了水圈、生物圈和岩石圈的物质循环和能量流动。这种自然的能量和物质循环对于人类生活和生存至关重要。2、生物多样性的维护:地球的圈层结构是生物多样性的重要...
  • 地球外部圈层最活跃的圈层
    答:生物圈是地球的一个外层圈,其范围大约为海平面上下垂直约10公里。它包括地球上有生命存在和由生命过程变化和转变的空气、陆地、岩石圈和水。从地质学的广义角度上来看生物圈是结合所有生物以及它们之间的关系的全球性的生态系统,包括生物与岩石圈、水圈和空气的相互作用。生物圈是一个封闭且能自我调控的...
  • 地球表面的圈层结构是什么?
    答:地球是人类生活的家园。它是一个圈层结构十分复杂的天体。它的各个圈层都和我们息息相关,而且它们之间时时刻刻都进行着物质交换并相互作用。在地球科学中,地球表面圈层结构包括大气圈、水圈、生物圈及岩石圈。大气圈:是人类和地球生物的保护圈。它吸收太阳的超紫外线、扩散光线,还能使地球表层免受陨石...
  • 地球表面的圈层结构是怎样的?
    答:这种使岩石圈发生变化的作用就是地质作用。大气圈、水圈、生物圈和岩石圈组成了地球表面最基本的圈层,它们彼此之间有着密切的关系。水圈和大气圈通过水的蒸发、凝结、降水和气体的溶解、挥发等相互渗透和影响。固体地球界面上下是大气和水最为活跃的场所。岩石圈的物质也在不断运动,并通过火山喷发等形式...
  • 地球外圈层对自然环境的意义
    答:以地球的软流圈为界,可以把地球分为内、外两大圈层。地球的外部圈层可分为大气圈、水圈、生物圈和岩石圈,各个圈层既围绕地表可各自形成一个封闭的体系,同时又相互关联、相互影响、相互渗透、相互作用,并共同促进地球外部环境的演化。地球上的生命主要存在于大气、水和土壤三个圈层之中。人类活动造成...
  • 地球系统各圈层的相互作用
    答:地球各圈层在分布上有一个显著的特点,即固体地球内部与表面之上的高空基本上是上下平行分布的,而在地球表面附近,各圈层则是相互渗透甚至相互重叠的,其中生物圈表现最为显著,其次是水圈。原始大气圈和水圈形成之后,在它们与岩石圈的接触地带,无机物经化学演化形成有机物质,生命从无机界中产生出来,...