磁路基霍夫定律有哪些内容?

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-31
基尔霍夫定律的主要内容是什么?

基尔霍夫定律是德国物理学家基尔霍夫提出的。基尔霍夫定律是电路理论中最基本也是最重要的定律之一。它概括了电路中电流和电压分别遵循的基本规律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。定义:在给定温度下,对于给定波长,所有物体的比辐射率与吸收率的比值相同,且等于该温度和波长下理想黑体的比辐射率编辑本段主要内容基尔霍夫第一定律  第一定律又称基尔霍夫电流定律,简记为KCL,是电流的连续性在集总参数电路上的体现,其物理背景是电荷守恒公理。基尔霍夫电流定律是确定电路中任意节点处各支路电流之间关系的定律,因此又称为节点电流定律,它的内容为:在任一瞬时,流向某一结点的电流之和恒等于由该结点流出的电流之和,即:
  

基尔霍夫定律在直流的情况下,则有:
  

基尔霍夫定律  通常把上两式称为节点电流方程,或称为KCL方程。
  它的另一种表示为:
  

基尔霍夫定律  在列写节点电流方程时,各电流变量前的正、负号取决于各电流的参考方向对该节点的关系(是“流入”还是“流出”);而各电流值的正、负则反映了该电流的实际方向与参考方向的关系(是相同还是相反)。
  通常规定,对参考方向背离(流出)节点的电流取正号,而对参考方向指向(流入)节点的电流取负号。
  

KCL的应用  图KCL的应用所示为某电路中的节点
,连接在节点的支路共有五条,在所选定的参考方向下有:
  

基尔霍夫定律  KCL定律不仅适用于电路中的节点,还可以推广应用于电路中的任一假设的封闭面。即在任一瞬间,通过电路中任一假设封闭面的电流代数和为零。
  

KCL的推广  图KCL的推广所示为某电路中的一部分,选择封闭面如图中虚线所示,在所选定的参考方向下有:
  

基尔霍夫定律基尔霍夫第二定律  第二定律又称基尔霍夫电压定律,简记为KVL,是电场为位场时电位的单值性在集总参数电路上的体现,其物理背景是能量守恒公理。基尔霍夫电压定律是确定电路中任意回路内各电压之间关系的定律,因此又称为回路电压定律,它的内容为:在任一瞬间,沿电路中的任一回路绕行一周,在该回路上电动势之和恒等于各电阻上的电压降之和,即:
  

基尔霍夫定律在直流的情况下,则有:
  

基尔霍夫定律通常把上两式称为回路电压方程,简称为KVL方程。
  KVL定律是描述电路中组成任一回路上各支路(或各元件)电压之间的约束关系,沿选定的回路方向绕行所经过的电路电位的升高之和等于电路电位的下降之和。
  回路的“绕行方向”是任意选定的,一般以虚线表示。在列写回路电压方程时通常规定,对于电压或电流的参考方向与回路“绕行方向”相同时,取正号,参考方向与回路“绕行方向”相反时取负号。
  

KVL的应用图KVL的应用所示为某电路中的一个回路ABCDA,各支路的电压在所选择的参考方向下为u1、u2、u3、u4,因此,在选定的回路“绕行方向”下有:u1+u2=u3+u4。
  KVL定律不仅适用于电路中的具体回路,还可以推广应用于电路中的任一假想的回路。即在任一瞬间,沿回路绕行方向,电路中假想的回路中各段电压的代数和为零。
  

KVL的推广图KVL的推广所示为某电路中的一部分,路径a、f
、c
、b
并未构成回路,选定图中所示的回路“绕行方向”,对假象的回路afcba列写KVL方程有:u4+uab=u5,则:uab=u5-u4。
  由此可见:电路中a、b两点的电压uab,等于以a为原点、以b为终点,沿任一路径绕行方向上各段电压的代数和。其中,a、b可以是某一元件或一条支路的两端,也可以是电路中的任意两点。
KCL的复频域形式  从电路理论中已经知道,对于电路中的任一个节点A或割集C,其时域形式的KCL方程为
  

基尔霍夫定律  ,k=1,2,3,……n,式中,n为连接在节点A上的支路数或割集C中所包含的支路数。对上式进行拉普拉斯变换得

基尔霍夫定律  式中,
  

基尔霍夫定律  为支路电流ik(t)的像函数。上式即为KCL的复频域形式。它说明集中于电路中任一节点A的所有支路电流像函数的代数和等于零;或者电路的任一割集C中所有支路电流像函数的代数和等于零。
KVL的复频域形式
  对于电路中任一个回路,其时域形式的KVL方程为
  

基尔霍夫定律  ,k=1,2,3,……n。式中,n为回路中所含支路的个数。对上式进行拉普拉斯变换即得
  ,式中,
  为支路电压uk(t)的像函数。上式即为KVL的复频域形式。它说明任一回路中所有支路电压像函数的代数和等于零。
编辑本段相关应用  基尔霍夫电流定律(KCL)描述了电路中各支路的电流之间的关系,基尔霍夫电压定律(KVL)描述了电路中各支路电压之间的关系,它们都与电路元件的性质无关,而只取决于电路的连接方式。所以我们把这种约束关系称为连接方式约束或拓扑约束,而把根据它们写出来的方程分别称为KCL约束方程和KVL约束方程。
编辑本段附  基尔霍夫定律是有关热辐射的基本定律中的一条,在热辐射的理论和应用中都占有很重要的地位。又成为基尔霍夫辐射定律。
  辐射
  实验得知,当热量平衡情况下,即温度保持恒定时,如物体发出波长λ的辐射能,也将吸收同样波长λ的辐射能;发射率较大的物质,其吸收率也较大。基尔霍夫定律表述了这种关系:物体的发射率(eλ,T)和吸收率(aλ,T)与物体的性质有关,但eλ,T与aλ,T的比值和物体的性质无关。对所有物体而言,此比值只是温度T与波长λ的函数,用下式表示:
基尔霍夫定律
  式中eλ.T和aλ.T分别为在温度一定时物体对某一波长的辐射能力和吸收率;Eλ.T为一常数。
  对于一定的波长λ,在一定的温度T时,此比值为与物体性质无关的常数。对于绝对黑体来说,aλ,T=
1,所以绝对黑体的发射率就等于E(λ,T)。显然,任何物体在某一温度T时,对某一波长λ的发射率与吸收率之比值就等于绝对黑体在同温度T时同一波长λ的发射率。
  由此可知:①辐射能力强的物体,其吸收能力也强,反之亦然;②对于同一物体,在温度T时辐射某一波长的辐射,那么它也吸收这一波长的辐射;③在同一温度下,任何物体的辐射能力,都小于黑体的辐射能力。基尔霍夫定律把一般物体的辐射、吸收与黑体的辐射联系起来,从而可能通过研究黑体辐射来了解一般物体的辐射。

它包括基尔霍夫电流定律和基尔霍夫电压定律。

确切得说是磁路基尔霍夫定律

磁路基尔霍夫第一定律:根据磁通连续原理,对如上图所示的有分支磁路,在磁路的任何一个节点(立体封闭面)上,磁通的代数和等于零,即:

∑Φ=0∑Φ=0


以上图设定的磁通参考方向为正方向,对图中闭合面A,则:Φ1+Φ2=Φ3。

也可以认为,流过节点的磁通代数和等于流出节点的磁通代数和。

磁路基尔霍夫第二定律:与前面的无分支磁路的全电流定律相仿,对有分支磁路存在有:磁路的任一闭合回路中的磁压降Hl的代数和等于该回路的磁动势的代数和,即:

∑IN=∑Hl=∑ΦRm∑IN=∑Hl=∑ΦRm


当回路巡行方向与磁场方向一致时,Hl取正值,反之取负值;当巡行方向与电流方向符合右螺旋定则时,IN取正值,反之取负值。对上图磁路有:

I1N1=H1l1+H3l3=Φ1Rm1+Φ3Rm3I2N2=H2l2+H3l3=Φ2Rm2+Φ3Rm3I1N1=H1l1+H3l3=Φ1Rm1+Φ3Rm3I2N2=H2l2+H3l3=Φ2Rm2+Φ3Rm3


通过磁路几个定律的介绍,读者不难发现,磁路定律与电路定律在形式上存在对偶关系。但应特别指出,对偶关系仅是计算形式上相似,而不是说它们的物理性质相同。例如电流是电荷的运动,而磁路中并无磁粒子在移动;电路开路时有电动势存在但无电流,而磁路开路(指有气隙)时,只要磁动势存在就有气隙磁通;电路中电动势为零,电流亦为零,磁路中磁动势为零,但由于有剩磁,故磁通仍不为零;电路中电流通过电阻要损失功率而磁路中,恒定磁通通过磁阻时不消耗能量,即Φ2RmΦ2Rm不表示功耗。就磁路本身来说,维持恒定的磁通并不需要消耗功率,而只有当磁通交变时才会出现功率损耗。

最后需要指出,由于导磁率–的非线性,故磁阻亦是非线性的,用磁路欧姆定律或基氏定律所列出的是非线性方程,在定量计算时是相当困难的。另外,由于电路中的导体与绝缘体的导电率相差几千万倍,故漏电问题不存在。而磁路中磁性材料与空气的导磁率相差仅几千倍,故漏磁往往不容忽略,所以磁路计算的准确度远不及电路计算。





  • 磁路基霍夫定律有哪些内容?
    答:磁路基尔霍夫第二定律:与前面的无分支磁路的全电流定律相仿,对有分支磁路存在有:磁路的任一闭合回路中的磁压降Hl的代数和等于该回路的磁动势的代数和,即:∑IN=∑Hl=∑ΦRm∑IN=∑Hl=∑ΦRm 当回路巡行方向与磁场方向一致时,Hl取正值,反之取负值;当巡行方向与电流方向符合右螺旋定则时,IN...