求聚氯乙烯反应釜毕业设计,超高分奖赏

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-07
谁知道聚氯乙烯反应釜的历史或者反应釜的历史?急需!!!!!!!!!

反应釜由釜体、釜盖、夹套、搅拌器、传动装置、轴封装置、支承等组成。搅拌形式一般有锚式、桨式、涡轮式、推进式或框式等,搅拌装置在高径比较大时,可用多层搅拌桨叶,也可根据用户的要求任意选配。并在釜壁外设置夹套,或在器内设置换热面,也可通过外循环进行换热。加热方式有电加热、热水加热、导热油循环加热、远红外加热、外(内)盘管加热等,冷却方式为夹套冷却和釜内盘管冷却,搅拌桨叶的形式等。支承座有支承式或耳式支座等。转速超过160转以上宜使用齿轮减速机.开孔数量、规格或其它要求可根据用户要求设计、制作。   1.通常在常压或低压条件下采用填料密封,一般使用压力小于2公斤。   2.在一般中等压力或抽真空情况会采用机械密封,一般压力为负压或40公斤。   3.在高压或介质挥发性高得情况下会采用磁力密封,一般压力超过14公斤以上。除了磁力密封均采用水降温外,其他密封形式在超过120度以上会增加冷去水套。

你的反应釜是什么材质的?

1 前言
1978年以来,包头塑料科研所先后开发研制了多种聚氯乙烯稀土热稳定剂。从形态上分有固态和液态稀土热稳定剂;从稀土品种上分有混合和单一稀土热稳定剂;从制品应用上有普通制品、化学建材、透明类制品、半透明和不透明制品等。这些稀土热稳定剂由于热稳定性好、无毒、加入量少、易混合塑化、制品性能优良等特点已日益引起助剂生产企业和塑料加工企业的关注。它的出现填补了稀土在塑料中应用的空白,改善了塑料制品的性能,扩大了塑料的应用领域。
2 聚氯乙烯稀土热稳定剂的稳定机理探讨
2.1 聚氯乙烯热分解机理
聚氯乙烯树脂若确实符合有规律的重复单元排列,而没有其它结构的理想状态,可以预料这个聚合物的稳定性是十分突出的。然而,工业生产的聚氯乙烯树脂并不是有规律的头尾重复排列的某种单一结构,而是有许多不同结构的复杂混合物,既有直链,又有支链,还具有较宽的分子量分布。这样聚氯乙烯树脂在受外界光、氧、热的作用下,会发生降解,实质上聚氯乙烯的降解在聚合釜中已开始了。有研究表明,在聚氯乙烯结构中,内部的烯丙基氯最不稳定,依次是叔氯、末端烯丙基氯、仲氯。从这一点出发,聚氯乙烯降解最初是由于脱掉一个氯化氢而引起的。脱氯化氢是在分子上含有或相邻于叔氯或烯丙基氯的某一点上开始,不管是叔氯还是烯丙基氯都能起到一个活化基团的作用。
式中:X为活化基团
脱掉一个氯化氢分子随即在聚氯乙烯树脂键形成一个不饱和双键,于是就使相邻的氯原子活化。这个氯原子在结构上和烯丙基氯一样,这就促使另一个氯化氢分子随后脱掉,这个过程自身连续重复下去,这种递增的脱氯化氢作用进行得十分迅速,很快就形成一个多烯键段,导致聚合物降解。
在聚氯乙烯树脂中连锁脱氯化氢一般解释有自由基型和离子型两种机理。
自由基型:聚氯乙烯在受热、光、氧、机械力等外因活化后,其分子中的缺陷很容易产生游离基,可分为三个阶段进行。A:氯原子产生;B:氯原子从氯化烃中抽出氢原子;C:官能团重排——得到加上另一个氯原子的烯烃,有如下连锁反应:
离子型:这种机理认为,PVC分解脱HCl反应的引发起因于C-Cl极性键及邻近受其能量活化的C-H键,邻近亚甲基上的氢原子带有诱导电荷δ+,这对四个离子络合体的形成创造了有利条件,随后由于活化络合体中环状电子的转移,脱出HCl和在PVC分子中产生双键。活化中心双键的形成,使邻近氯原子上的电子云密度增大,因烯丙基氯结构的共轭效应,使脱HCl的反应连续进行,以致产生双键和单键间隔相连的体系——共轭双键体系。
在聚氯乙烯的热成型加工中,加工温度远远超过聚氯乙烯的分解温度。在加工过程中,O2、O3、OH、HCl及活性金属离子等的催化作用加速了它的分解,其中HCl是加速分解的主要因素之一。只有加入适量的热稳定剂“吸收中和”PVC分解时释放出来的HCl,才能顺利成型。当然每一种稳定剂的作用远不只中和HCl。
2.2 聚氯乙烯稀土热稳定剂的性质
聚氯乙烯稀土热稳定剂是由稀土硫酸钠复盐经氢氧化钠溶液转化而成,与三盐基硫酸铅类似,呈弱碱性。由于该稳定剂中四价铈的存在,呈浅黄色粉末。稀土化合物的碱性随镧系元素离子半径的减小而减弱。该稳定剂的平均碱度=1.891,远次于镁、钙、锶、钡氢氧化物碱性。经PVC热分解刚果红试纸试验,其分解时间长于三盐基硫酸铅。
笔者还生产了有机弱酸(硬脂酸、柠檬酸)和稀土元素反应生产的有机酸稀土热稳定剂。该产品为白色极细粉末状、有胶状感,与PVC极易混合,但在挤出时扭矩加大,挤出量和塑化效果明显改善,制品性能,尤其是耐老化性能明显提高。
2.3 聚氯乙烯稀土热稳定剂机理探讨
(1)吸附中和HCl机理
根据三盐吸附中和HCl的热稳定机理,PVC脱HCl的速度是温度的函数,当达到成型加工温度时,脱HCl的速度明显增大。由于三盐偏碱性,根据它的分子结构特点,首先对母体脱出的氯化氢分子进行了化学吸附,形成氢键,再进行化学反应,形成了氯基硫酸铅络盐。
这样阻止了HCl分子在热成型体系中对母体分子的冲击,延缓了PVC的热分解,使热加工成型顺利进行。
当用稀土稳定剂进行热成型时,观察到制品的颜色随着成型加工温度的升高由玫瑰色向棕红色转变,这种颜色的变化决不是由PVC的降解着色所导致。因为从红外光谱曲线的分析中得到:加入稀土稳定剂的谱线与加入三盐的谱线没有根本的变化,并且前者C-Cl键,自由羧基-OH的振动减弱。从热重曲线中得知:加入稀土稳定剂的试样,由于生成了稳定基因使热重曲线向高温度方向偏移。综合上述两种实验结果得到:稀土稳定剂的加入提高了碳键稳定性,聚合物的结构没有发生变化。
实验还发现,经丙酮浸泡的试样的颜色完全脱尽,而聚合物降解的多烯结构着色是不可逆的,生产中产生的制品着色只能由稀土稳定剂所致。
在理论上可解释为稀土金属离子与二价铅离子的碱性接近。从物理化学热力学第二定律吉氏函数判断,稀土稳定剂与PVC分解时放出的HCl发生了反应,由此可判断稀土稳定剂吸附HCl的反应为自发反应。依据上述结论,稀土稳定剂在PVC热加工成型中,对游离的HCl分子进行了化学吸附,在该体系中发生了表面化学反应。根据化学吸附的不可逆原理,与游离的HCl分子生成了非活性产物盐基性氯化物,从而消除了HCl分子对PVC降解的催化效应。提高了PVC热加工成型体系中进一步脱HCl反应的活化能,阻滞了PVC成型加工过程中母体的降解,起到了热稳定剂的作用。
(2)捕捉游离基机理
镧系元素的价电子层结构中,4f电子层有一种保持或接近全空、半充满、全充满的倾向,这是一种比较稳定的结构。由于这个原因,稀土稳定剂中的三价稀土是不稳定的。当受到PVC热加工体系中的热与功的激发,将它剩余的4f层的一个(或2个)电子贡献于PVC体系中游离羧基活性分子集团,从而形成一个稳定的化学键,成为四价稀土。同时还能与体系中的氧和臭氧及微量的水分进行氧化还原反应,也变为四价稀土。
此外,从镧系收缩及其电子层结构等量子力学的特点出发,可判断出,稀土稳定剂可将PVC加工中的氧和PVC本身含有的离子型杂质进行物理吸附,从而进入稀土稳定剂的晶格穴中,避免了它们对母体C-Cl键的冲击振动。由于PVC脱HCl的活化能在真空中为25千卡/摩尔~35千卡/摩尔,在氧气中明显降为12千卡/摩尔~20千卡/摩尔,因此,氧、臭氧等气体分子及其离子型杂质能大大加速脱HCl反应,通过稀土稳定剂的作用,可以提高PVC脱HCl的活化能,从而延缓了PVC塑料的热降解。
3 结论
稀土聚氯乙烯稳定剂开发20年来,其生产企业日趋增多,应用领域日趋扩大。尤其是和许多传统稳定剂复配,开发稀土多功能复合稳定剂,使稳定剂家族又增加了一个新成员。但其稳定机理尚待进一步完善,尤其是用大量的实验结果说明机理的正确性、科学性,以便开发出性能更好的稀土稳定剂,把稀土应用和塑料加工推向一个新的高潮。

聚氯乙烯多乙烯多胺负载钯配合物对Heck反应的催化性能

【摘要】 目的:研究高分子材料聚氯乙烯负载胺-钯配合物的制备并探讨其催化性能。方法:以聚氯乙烯为原料,通过胺化反应得到聚氯乙烯多乙烯多胺,进一步制得聚氯乙烯多乙烯多胺负载钯配合物(PVC-PP-Pd),观察其在不同反应条件下对碘苯与丙烯酸的Heck反应的催化性能。结果:PVC-PP-Pd在空气氛围中即可有效地催化碘苯与丙烯酸的反应,在100 ℃和较少的催化剂用量下,可较高产率地生成反式取代产物,而且便于回收,重复使用性能较好。结论:PVC-PP-Pd是Heck反应良好的负载型催化剂。

【关键词】 聚氯乙烯 Pd 负载型催化剂 Heck反应

过渡金属催化剂催化卤代芳烃和乙烯基化合物的C-C偶联反应(Heck反应),是立体选择地形成C-C键的重要方法,在药物合成中具有广泛的应用[1]。Heck反应催化剂中最常用的过渡金属是钯,传统的均相钯催化剂虽有较高的催化活性,但在反应过程中易产生钯黑,并且在反应结束后难以与反应液分离,影响了Heck反应的工业应用,因此,开发能克服上述缺点的负载钯多相催化剂有着重要的理论和实际意义,也是绿色化学的一个主要目标。负载钯催化剂常用的固体材料一般有高分子材料、碳、无定形SiO2、沸石和分子筛等[2-5];常用的配体为单齿、高位阻和供电子能力强的三芳基膦,但由于其不利于工业化,胺配体成为近年来的一个研究热点[6]。张磊等[7]以聚氯乙烯作为催化剂的载体,采用化合物三乙烯四胺作为功能化试剂,制得了负载钯配合物,该催化剂对Heck反应有很好的催化性能。本研究以聚氯乙烯为原料,采用混合物多乙烯多胺作为功能化试剂,制得聚氯乙烯多乙烯多胺,并对其与钯的配位反应条件进行优化,研究了该催化剂催化碘苯与丙烯酸的Heck反应的性能。

1 材料和方法

1.1 试剂与仪器 聚氯乙烯(PVC),平均聚合度为1 100,120~160目;多乙烯多胺(C.P.);其他试剂均为市售的分析纯。Nicolet-670FT-IR型红外光谱仪,其他为常用仪器。

1.2 聚氯乙烯多乙烯多胺负载钯配合物的合成 在装有电动搅拌器、回流冷凝管和温度计的三颈烧瓶中,加入5.0 g PVC和20 ml多乙烯多胺,溶胀过夜,再在沸水浴中加热搅拌反应2 h,冷却,加水搅拌(发热),冷却,抽滤,水洗至中性、无色,再用乙醇洗涤至乙醇无色,真空干燥至恒重,得棕褐色聚氯乙烯多乙烯多胺(简写作PVC-PP)[8]。

称取聚氯乙烯多乙烯多胺2.0 g,将 0.1 g二氯化钯溶解于50 ml丙酮中(超声波溶解),一起置于烧瓶中,室温搅拌2 h。过滤,用丙酮、蒸馏水充分洗涤,产物在100 ℃、真空环境中干燥6 h,得棕褐色聚氯乙烯多乙烯多胺负载钯配合物(简写作PVC-PP-Pd) 。

1.3 碘苯与丙烯酸的Heck芳基化反应 在100 ml反应瓶中加入100 mg PVC-PP-Pd,10 mmol碘苯,15 mmol丙烯酸,6 ml N,N-二甲基甲酰胺(DMF)和30 mmol三丁胺(Bu3N),混合物在100℃下反应3 h。反应结束后,冷却,加入25 ml水和2 g碳酸钠,搅拌10 min,过滤,滤液用盐酸酸化,立即出现大量白色固体,过滤,水洗至中性即得产物反式肉桂酸。

2 结果与讨论

2.1 产物的结构表征 产物经过测试,m.p.132.0~133.9 ℃(文献值:132.5~134.5℃);IR υ:3384.17,1686.73 (w, ArC=O),1628.74,1574.97,1495.46 (s,Ar),979.11, 771.67,709.41 cm-1。

2.2 PVC-PP的红外光谱分析 聚氯乙烯多乙烯多胺的合成路线如图1所示,产物中可能存在交联结构。

PVC:白色粉末状固体,IR υ: 1428.49,1252.82 cm-1。

PVC-PP:棕褐色粉末状固体,IR υ: 3339.98,1584.72,1428.72,1252.52,1120.91 cm-1。

PVC-PP中在1120.91 cm-1处出现强的C-N伸缩振动谱带,在1584.72 cm-1处出现N-H的弯曲振动谱带,更突出地在3339.98 cm-1处出现N-H的伸缩振动谱带,说明了PVC-PP的生成。
2.3 反应氛围及反应温度对PVC-PP-Pd催化性能的影响 负载型钯配合物催化Heck反应一般是在惰性气体氛围中进行的,实验发现PVC-PP-Pd在空气氛围中即可较好地催化Heck反应,这就使其实际应用更加便利。

负载型钯配合物催化Heck反应所需温度有很大差别,一般在100 ℃左右,有些高达160 ℃[9],温度过高对Heck反应的应用也是一个很大的限制。表1列出了不同温度下PVC-PP-Pd的催化性能。从表中可以看出,在60 ℃ 时,PVC-PP-Pd就可以有效地催化碘苯和丙烯酸的Heck芳基化反应,但反应产率较低。温度由60 ℃升至110 ℃的过程中,反应产率逐渐升高,温度继续升高时,产率有所下降,这可能是由于温度过高有副产物生成。

2.4 PVC-PP-Pd的重复使用性能 配合物催化剂的稳定性问题一直受到人们的重视。我们观察了PVC-PP-Pd的重复使用性能,发现PVC-PP-Pd经循环使用后再进行简单的再生处理(反应结束后,将催化剂从反应液中分离出来,用蒸馏水、乙醇充分洗涤,干燥),其催化性能可基本得到恢复。其催化碘苯与丙烯酸的反应结果见表2。催化剂重复使用三次,肉桂酸的产率仅降低5%左右,产率仍达到84.3%,显示了PVC-PP-Pd较好的重复使用性能。

2.5 PVC-PP-Pd 用量对其催化性能的影响 催化剂的用量对反应能否顺利进行也有很大影响,用量过少反应不能顺利进行,用量过多又造成浪费,表3列出了PVC-PP-Pd的用量对Heck芳基化反应的影响。从表中可以看出,催化剂用量为30 mg时,芳基化反应即可进行,肉桂酸的产率为72%。增大催化剂用量,产率有所增加;用量为100 mg时,效果最好;用量增大至120 mg时,产率不再有明显变化。

2.6 碱试剂对PVC-PP-Pd催化性能的影响 在取代碘苯与共轭烯烃的Heck芳基化反应循环中,活性中心Pd(0)主要通过H-Pd-I→Pd(0)+HI过程而得到恢复,因此反应体系中需要碱试剂来及时消除HI。表4列出了不同的碱试剂对PVC-PP-Pd催化性能的影响。由表可见,采用与活性中心Pd(0)配位作用较弱的Et3N或Bu3N均能促进该反应,其中以Bu3N效果较好,而碳酸钾等固体粉末由于不溶于整个反应体系,因此不适用于此反应。

综上所述,本实验结果表明,PVC-PP-Pd是Heck反应良好的负载型催化剂。最佳反应条件:15 mmol丙烯酸与10 mmol碘苯,6 ml DMF和30 mmol Bu3N,PVC-PP-Pd 100 mg,在100 ℃反应3 h,产物反式肉桂酸的产率达89.5%。与张磊等[7]的催化剂相比,我们采用的多乙烯多胺为混合物,价廉易得;PVC-PP与钯的配位反应不需要回流,在室温条件下搅拌即可,方法节能并更为简便。PVC-PP-Pd无毒、无腐蚀性,环境污染小,价廉易得且性能稳定,是一种很有应用前景的负载型催化剂。

【参考文献】
[1] Littke AF, Fu GC. Palladium-catalyzed coupling reactions of aryl chlorides[J]. Angew Chem Int Ed,2002, 41(22): 4176-4211.

[2] K謍ler K, Magner W, Djakovitch L. Supported palladium as catalyst for carbon-carbon bond construction(Heck reaction)in organic synthesis[J]. Catal Today,2001, 66(1): 105-114.

[3] 蔡明中, 宋才生. 聚γ-巯丙基硅氧烷钯(0)配合物的合成及催化性能研究[J]. 高等学校化学学报, 1998, 19(10), 1693-1696.

[4] Mehnert CP, Weaver DW, Ying JY. Heterogeneous Heck catalysis with palladium-grafted molecular sieves[J]. J Am Chem Soc,1998, 120(47): 12289-12296.

[5] Zhou JM, Zhou RX, Mo LY, et al. MCM-41 supported aminopropylsiloxane palladium(0) complex: a highly active and stereoselective catalyst for Heck reaction[J]. J Mol Catal A Chem,2002,178(1): 289-292.

[6] 谢叶香, 李金恒, 尹笃林. 胺作为配体在钯催化偶联反应中应用[J]. 有机化学, 2006, 26(8): 1155-1163.

[7] 张磊, 崔元臣. 聚氯乙烯三乙烯四胺负载钯配合物的制备及对Heck反应的催化性能[J]. 化学学报, 2005, 63(10): 924-928.

[8] 俞善信, 徐满才, 李善吉,等. 聚氯乙烯-多乙烯多胺树脂的合成与表征[J]. 合成化学, 1997, 5(4): 416-419.

[9] Zhao FY, Murakami K, Shirai M, et al. Recyclable homoge-neous/heterogeneous catalytic systems for Heck reaction through reversible transfer of palladium species between solvent and support[J]. J Catal, 2000, 194(1): 479-483.

我这边有这个些资料,我发给你,你到邮箱去看下是否有帮助

100m_3聚氯乙烯反应釜关键设备和成套工艺技术的研制与开发.pdf

热塑性聚氨酯与聚氯乙烯共混研究.kdh

榆横能源开发建设有限公司30万吨_年聚氯乙烯项目可行性研究.nh

水相法氯化聚氯乙烯生产技术

1万分我也不写

  • 求聚氯乙烯反应釜毕业设计,超高分奖赏
    答:在聚氯乙烯的热成型加工中,加工温度远超分解温度。因此,O2、O3、OH、HCl及活性金属离子等的催化作用加速了分解。加入适量的热稳定剂“吸收中和”PVC分解时释放的HCl是顺利成型的关键。2.2 聚氯乙烯稀土热稳定剂的性质 聚氯乙烯稀土热稳定剂由稀土硫酸钠复盐经氢氧化钠溶液转化而成,呈弱碱性,浅黄色粉...
  • 求聚氯乙烯反应釜毕业设计,超高分奖赏
    答:在聚氯乙烯的热成型加工中,加工温度远远超过聚氯乙烯的分解温度。在加工过程中,O2、O3、OH、HCl及活性金属离子等的催化作用加速了它的分解,其中HCl是加速分解的主要因素之一。只有加入适量的热稳定剂“吸收中和”PVC分解时释放出来的HCl,才能顺利成型。当然每一种稳定剂的作用远不只中和HCl。2.2 聚氯...
  • PVC的制备方法有哪些?
    答:将去离子水加入聚合釜内,并将聚合配方的助剂如分散剂、缓冲剂等加入釜内搅拌,然后加入引发剂,密封聚合釜,抽除釜内空气,必要时用氮气替换,使釜内残留氧含量降至最低,最后加入氯乙烯单体VCM,然后通过反应釜夹套中的过热水加热,将釜温升至预定温度并进行聚合。这些聚合反应热通过3种方式散热,但是根据反应釜大小,3种...
  • 聚录乙烯燃烧的烟味怎么去除
    答:在PVC分子链上存在短的间规立构规整结构。随着聚合反应温度的降低,间规立构规整度提高。聚氯乙烯大分子结构中存在着头头结构、支链、双键、烯丙基氯、叔氯等不稳定性结构、使得耐热变形及耐老化差等缺点。故作交联后,可将该类缺点消除。PVC的立构规整结构 交联分为辐射交联和化学交联。1.辐射交联。使...
  • 聚氯乙烯树脂是如何制备的?
    答:然后流入混合釜,水洗再离心脱水、干燥即得树脂成品。特点是,反应器内有大量水,物料粘度低,容易传热和控制;聚合后只需经过简单的分离、 洗涤 、干燥等工序,即得树脂产品,可直接用于成型加工;产品较纯净、均匀。 (2)乳液聚合法 最早的工业生产 PVC的一种方法。在乳液聚合中,除水和氯乙烯单体外,还要加入烷基磺酸钠...
  • PVC塑胶粒是什么?
    答:对此在制造聚合釜时对温度及压力的设计留有充分的余量,防止物理爆破酿成的灾难性后果。聚合反应的温度、压力的失控事故常常发生在反应的前中期,即VCM聚合为PVC的转化率小于70%时单体富相存在,才会发生上述温度。压力超高VCM转化率大于70%时,单体富相消失时,压力稳步降低。气提反应,用于清除氯乙烯单体,可以达到小于1...
  • 聚氯乙烯是什么材料?
    答:然后流入混合釜,水洗再离心脱水、干燥即得树脂成品。特点是,反应器内有大量水,物料粘度低,容易传热和控制;聚合后只需经过简单的分离、 洗涤 、干燥等工序,即得树脂产品,可直接用于成型加工;产品较纯净、均匀。 (2)乳液聚合法 最早的工业生产 PVC的一种方法。在乳液聚合中,除水和氯乙烯单体外,还要加入烷基磺酸钠...
  • 聚氯乙烯的单体,聚合原理,聚合方法,整个聚合工艺(包括温度,压力,流程...
    答:然后流入混合釜,水洗再离心脱水、干燥即得树脂成品。特点是,反应器内有大量水,物料粘度低,容易传热和控制;聚合后只需经过简单的分离、 洗涤 、干燥等工序,即得树脂产品,可直接用于成型加工;产品较纯净、均匀。 (2)乳液聚合法 最早的工业生产 PVC的一种方法。在乳液聚合中,除水和氯乙烯单体外,还要加入烷基磺酸钠...