遗传学的发展简史

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-10
遗传学的发展史?

人类在新石器时代就已经驯养动物和栽培植物,而后人们逐渐学会了改良动植物品种的方法。西班牙学者科卢梅拉在公元60年左右所写的《论农作物》一书中描述了嫁接技术,还记载了几个小麦品种。
533~544年间中国学者贾思勰在所著《齐民要术》一书中论述了各种农作物、蔬菜、果树、竹木的栽培和家畜的饲养,还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。改良品种的活动从那时以后从未中断。
许多人在这些活动的基础上力图阐明亲代和杂交子代的性状之间的遗传规律都未获成功。直到1866年奥地利学者孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了现在称为孟德尔定律的遗传规律,才奠定了遗传学的基础。

扩展资料
遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。
对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。基因相互作用与信号传导网络的系统生物学研究是系统遗传学的内容。
参考资料来源:百度百科-遗传学

遗传图是以在某个遗传位点上具有多个等位基因的遗传标记作为路标,以遗传学上的距离即两个遗传位点之间进行交换、重组的百分率cM作为图距,反映基因遗传效应的基因组图。建立人类遗传图的关键是要有足够的高度多态的遗传标记。但是,目前所知的具多态性的性状不多,等位基因的数目有限,信息量不足。这样,就限制了人类基因组的遗传分析工作。所幸DNA重组技术的建立提供了新一代的遗传标记。第一代的DNA标记是RFLP(限制性片段长度多态性)分析。这些RFLP片断可被某些限制性内切酶特异识别并切割。DNA序列的改变甚至是一个碱基的改变,将会改变限制性内切酶酶切片段的长度变化,并可通过一种称为凝胶电泳的方法来方便地显示这种长度的多态性。RFLP在整个基因组中都存在,根据对RFLP片段的多态性分析,可对某些疾病进行诊断并将与疾病有关的基因进行定位。但RFLP提供的信息量有限,在检测RFLP片段时需用到放射性同位素,不太安全。第二代遗传标记是被称为简短串联重复片段的STR。在检测RFLP的过程中,人们发现有一种类型是由于DNA重复序列造成的。这些DNA重复序列在人类基因组中有很多拷贝,它们可以头对头或头对尾地串联成一簇,分布于基因组的各个位点。在某一位点上,不同数量的重复序列(VNTR)也可以提供不同的长度片断。有的VNTR重复单位长度为6-12个碱基,称为小卫星;有的VNTR重复单位为2-6个碱基,称为微卫星或简短串联重复(STR)。STR具有高度多态性,同一遗传位点数目变化很大,在群体中也可形成多达几十种的等位基因,这是其他遗传标记所不能比拟的;此外,还可以利用PCR的DNA体外扩增技术,实现操作机器自动化。至1996年初,所建立的遗传图已含有6000多个以STR为主体的遗传标记,平均分辨率即两个遗传标记间的平均距离为0.7分摩,这个距离大致对应于0.7Mb的物理距离。人类的遗传图一直落后于其他物种的遗传图,今天,人类终于也有了自己的一张较为详尽的遗传图。想一想,有6000多个遗传标记作为路标,把基因组分成6000多个区域,只要以连锁分析的方法,找到某一表现型的基因与其中一种遗传标记邻近(即紧密连锁)的证据,就可以把这一基因图定位于这一标记所界定的区域内。这样,如果想确定与某种已知疾病有关的基因,即可根据决定疾病性状的位点与选定的遗传标记间的遗传距离,来确定与疾病相关的基因在基因组中的位置。

人类在新石器时代就已经驯养动物和栽培植物,而后人们逐渐学会了改良动植物品种的方法。西班牙学者科卢梅拉在公元60年左右所写的《论农作物》一书中描述了嫁接技术,还记载了几个小麦品种。533~544年间中国学者贾思勰在所著《齐民要术》一书中论述了各种农作物、蔬菜、果树、竹木的栽培和家畜的饲养,还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。改良品种的活动从那时以后从未中断。
许多人在这些活动的基础上力图阐明亲代和杂交子代的性状之间的遗传规律都未获成功。直到1866年奥地利学者孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了现在称为孟德尔定律的遗传规律,才奠定了遗传学的基础。
孟德尔的工作结果直到20世纪初才受到重视。19世纪末叶在生物学中,关于细胞分裂、染色体行为和受精过程等方面的研究和对于遗传物质的认识,这两个方面的成就促进了遗传学的发展。
从1875~1884的几年中德国解剖学家和细胞学家弗莱明在动物中,德国植物学家和细胞学家施特拉斯布格在植物中分别发现了有丝分裂、减数分裂、染色体的纵向分裂以及分裂后的趋向两极的行为;比利时动物学家贝内登还观察到马副蛔虫的每一个身体细胞中含有等数的染色体;德国动物学家赫特维希在动物中,施特拉斯布格在植物中分别发现受精现象;这些发现都为遗传的染色体学说奠定了基础。美国动物学家和细胞学家威尔逊在 1896年发表的《发育和遗传中的细胞》一书总结了这一时期的发现。
关于遗传的物质基础历来有所臆测。例如1864年英国哲学家斯宾塞称之为活粒;1868年英国生物学家达尔文称之为微芽; 1884年瑞士植物学家内格利称之为异胞质;1889年荷兰学者德弗里斯称之为泛生子;1883年德国动物学家魏斯曼称之为种质.实际上魏斯曼所说的种质已经不再是单纯的臆测了,他已经指明生殖细胞的染色体便是种质,并且明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路
孟德尔的工作于1900年为德弗里斯、德国植物遗传学家科伦斯和奥地利植物遗传学家切尔马克三位从事植物杂交试验工作的学者所分别发现。1900~1910年除证实了植物中的豌豆、玉米等和动物中的鸡,小鼠、豚鼠等的某些性状的遗传符合孟德尔定律以外,还确立了遗传学的一些基本概念。1909年丹麦植物生理学家和遗传学家约翰森称孟德尔式遗传中的遗传因子为基因,并且明确区别基因型和表型。同年贝特森还创造了等位基因、杂合体、纯合体等术语,并发表了代表性著作《孟德尔的遗传原理》。
从1910年到现在遗传学的发展大致可以分为三个时期:细胞遗传学时期、微生物遗传学时期和分子遗传学时期。 大致是1910~1940年,可从美国遗传学家和发育生物学家摩尔根在1910年发表关于果蝇的性连锁遗传开始,到1941年美国遗传学家比德尔和美国生物化学家塔特姆发表关于链孢霉的营养缺陷型方面的研究结果为止。
这一时期通过对遗传学规律和染色体行为的研究确立了遗传的染色体学说。摩尔根在1926年发表的《基因论》和英国细胞遗传学家达林顿在1932年发表的《细胞学的最新成就》两书是这一时期的代表性著作。这一时期中虽然在1927年由美国遗传学家米勒和1928年斯塔德勒分别在动植物中发现了 X射线的诱变作用,可是对于基因突变机制的研究并没有进展。基因作用机制研究的重要成果则几乎只限于动植物色素的遗传研究方面。 大致是1940~1960年,从1941年比德尔和塔特姆发表关于脉孢霉属中的研究结果开始,到1960~1961年法国分子遗传学家雅各布和莫诺发表关于大肠杆菌的操纵子学说为止。
在这一时期中,采用微生物作为材料研究基因的原初作用、精细结构、化学本质、突变机制以及细菌的基因重组、基因调控等,取得了已往在高等动植物研究中难以取得的成果,从而丰富了遗传学的基础理论。1900~1910年人们只认识到孟德尔定律广泛适用于高等动植物,微生物遗传学时期的工作成就则使人们认识到遗传学的基本规律适用于包括人和噬菌体在内的一切生物。 从1953年美国分子生物学家沃森和英国分子生物学家克里克提出DNA的双螺旋模型开始,但是50年代只在DNA分子结构和复制方面取得了一些成就,而遗传密码、mRNA、tRNA、核糖体的功能等则几乎都是60年代才得以初步阐明。
分子遗传学是在微生物遗传学和生物化学的基础上发展起来的。分子遗传学的基础研究工作都以微生物、特别是以大肠杆菌和它的噬菌体作为研究材料完成的;它的一些重要概念如基因和蛋白质的线性对应关系、基因调控等也都来自微生物遗传学的研究。分子遗传学在原核生物领域取得上述许多成就后,才逐渐在真核生物方面开展起来。
正像细胞遗传学研究推动了群体遗传学和进化遗传学的发展一样,分子遗传学也推动了其他遗传学分支学科的发展。遗传工程是在细菌质粒和噬苗体以及限制性内切酶研究的基础上发展起来的,它不但可以应用于工、农、医各个方面,而且还进一步推进分子遗传学和其他遗传学分支学科的研究。
免疫学在医学上极为重要,已有相当长的历史。按照一个基因一种酶假设,一个生物为什么能产生无数种类的免疫球蛋白,这本身就是一个分子遗传学问题。自从澳大利亚免疫学家伯内特在 1959年提出了克隆选择学说以后,免疫机制便吸引了许多遗传学家的注意。目前免疫遗传学既是遗传学中比较活跃的领域之一,也是分子遗传学的活跃领域之一。
在分子遗传学时代另外两个迅速发展的遗传学分支是人类遗传学和体细胞遗传学。自从采用了微生物遗传学研究的手段后,遗传学研究可以不通过生殖细胞而通过离体培养的体细胞进行,人类遗传学的研究才得以迅速发展。不论研究的对象是什么,凡是采用组织培养之类方法进行的遗传学研究都属于体细胞遗传学。人类遗传学的研究一方面广泛采用体细胞遗传学方法,另一方面也愈来愈多地应用分子遗传学方法,例如采用遗传工程的方法来建立人的基因文库并从中分离特定基因进行研究等。



  • 遗传学是什么?
    答:分子遗传学是在微生物遗传学和生物化学的基础上发展起来的。分子遗传学的基础研究工作都以微生物、特别是以大肠杆菌和它的噬菌体作为研究材料完成的;它的一些重要概念如基因和蛋白质的线性对应关系、基因调控等也都来自微生物遗传学的研究。分子遗传学在原核生物领域取得上述许多成就后,才逐渐在真核生物...
  • 人类遗传学的简史
    答:60年代中又产生了药物遗传学和体细胞遗传学。特别是1967年M.C.威斯和H.格林首次通过人鼠体细胞融合的方法确定了胸腺嘧啶激基因(TK)位于人的17号染色体上﹐从此全面地开展了人的基因定位工作。70年代以来采用了分子遗传学的方法﹐特别是工具的应用﹐有力地推动了基因定位和产前诊断研究工作的发展。
  • 试述分子遗传学的发展历史
    答:分子遗传学发展简史 1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。1955年,美国分子生物学家本泽用基因重组分析...
  • 微生物遗传学的发展简史
    答:30年代中已经开始对酵母菌、脉孢菌和草履虫的遗传学研究,不过那时研究的对象限于能进行有性生殖的微生物,研究的课题大多限于基因的分离、连锁和重组等。开始认识和利用微生物的优越性进行遗传学研究的是美国遗传学家G.W.比德尔和生物化学家E.L.塔特姆。他们原来企图通过果蝇复眼色素遗传的研究来阐明基...
  • 数量遗传学的简史
    答:50年代以来随着概率论、线性代数、多元统计和随机过程等的逐步应用,使数量遗传学的内容又有了很大的发展。 主要是用生物统计学方法对群体的某种数量性状进行随机抽样测量,计算出平均数、方差等,并在此基础上进行数学分析。根据丹麦植物生理学家和遗传学家W.L.约翰森的研究规定数量性状的表型值P 等于基因...
  • 发生遗传学的简史
    答:但限于当时生物学发展水平,还不能对基因控制发育的分子机制作深入的研究。50年代中期以来的分子生物学的重大进展使解决遗传和发育关系问题的条件逐渐成熟起来。遗传信息传递的中心法则揭示了生物的遗传和发育的内在联系。从分子水平看来,细胞分化和性状发育都是表型专一的大分子合成的结果,因而归根结蒂依赖...
  • 体细胞遗传学的简史
    答:植物的体细胞遗传学研究工作是在植物组织培养的基础上发展起来的。1934年英国学者P·R·怀特以番茄根为材料建成了第一个能活跃生长的细胞无性繁殖系。以后的发展主要是关于培养物的组织分化和细胞融合两个方面。1956年R·A·米勒发现了激动素,并且在含有一定浓度的激动素和生长素的培养基上使离体培养的...
  • 肿瘤遗传学的简史
    答:认为恶性肿瘤必须经过两次突变才能形成。在此基础上,1976年H·L·林奇系统地总结了前人的研究结果并发表了《肿瘤遗传学》专著。20世纪80年代初,遗传工程和哺乳动物细胞体外转化技术的应用,导致细胞癌基因的发现及其功能的逐渐阐明,使肿瘤遗传学的研究有了突破性的发展。
  • 药物遗传学的发现简史
    答:人们很早就发现有些人对某些药物(如抗疟药等)异常敏感,服用常规剂量便出现异常药物反应(如发生皮疹、溶血等)。1957年A·G·莫图尔斯基首先指出某些异常的药物反应与遗传缺陷有关。1959年T·福格尔正式提出药物遗传学这一名称。1962年W·卡洛发表了与药物遗传学有关的著作。1973年世界卫生组织发表了...
  • nei’s基因多样性
    答:1 理论分子群体遗传学的发.展简史经典群体遗传学最早起源于英国数学家哈迪和德国医学家温伯格于1908年提出的遗传平衡定律。以后, 英国数学家费希尔、遗传学家霍尔丹(Haldane JBS)和美国遗传学家赖特(Wright S)等建立了群体遗传学的数学基础及相关计算方法, 从而初步形成了群体遗传学理论体系, 群体遗传学也逐步发展成为...