天文学者怎么知道某个天体与我们的距离的?

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-05
求问天文学者怎么知道某个天体与我们的距离的啊?

多普勒红移。
在物理学和天文学领域,红移(Redshift)是指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。相反的,波长变短、频率升高的现象则被称为蓝移。红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波长增加都可以称为红移。对于波长较短的γ射线、X-射线和紫外线等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对于波长较长的红外线、微波和无线电波等波段,尽管波长增加实际上是远离红光波段,这种现象还是被称为“红移”。当光源远离观测者运动时,观测者观察到的电磁波谱会发生红移,这类似于声波因为多普勒效应造成的频率变化。这样的红移现象在日常生活中有很多应用,例如多普勒雷达、雷达枪,在分光学上,人们使用多普勒红移测量天体的运动。这种多普勒红移的现象最早是在19世纪所预测并观察到的,当时的部分科学家认为光的本质是一种波。另一种红移机制被用于解释在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象。红移增加的比例与距离成正比。这种关系为宇宙在膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。另一种形式的红移是重力红移,也就是所谓的爱因斯坦效应,是发生在广义相对论中当接近大质量物体产生时间扩张的结果。多普勒红移:物体和观察者之间的相对运动可以导致红移,与此相对应的红移称为多普勒红移,是由多普勒效应引起的。重力红移:根据广义相对论,光从重力场中发射出来时也会发生红移的现象。这种红移称为重力红移。宇宙学红移:20世纪初,美国天文学家埃德温·哈勃发现,观测到的绝大多数星系的光谱线存在红移现象。这是由于宇宙空间在膨胀,使天体发出的光波被拉长,谱线因此“变红”,这称为宇宙学红移,并由此得到哈勃定律。20世纪60年代发现了一类具有极高红移值的天体:类星体,成为近代天文学中非常活跃的研究领域。

三角视差法

测量天体之间的距离可不是一件容易的事。 天文学家把需要测量的天体按远近不同分成好几个等级。离我们比较近的天体,它们离我们最远不超过100光年(1光年=9.461012千米),天文学家用三角视差法测量它们的距离。三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了。稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定他它们的视差了。

移动星团法

这时我们要用运动学的方法来测量距离,运动学的方法在天文学中也叫移动星团法,根据它们的运动速度来确定距离。不过在用运动学方法时还必须假定移动星团中所有的恒星是以相等和平行的速度在银河系中移动的。在银河系之外的天体,运动学的方法也不能测定它们与地球之间的距离。

造父视差法(标准烛光法)

物理学中有一个关于光度、亮度和距离关系的公式。S∝L0/r2

测量出天体的光度L0和亮度S,然后利用这个公式就知道天体的距离r。光度和亮度的含义是不一样的,亮度是指我们所看到的发光体有多亮,这是我们在地球上可直接测量的。光度是指发光物体本身的发光本领,关键是设法知道它就能得到距离。天文学家勒维特发现“造父变星”,它们的光变周期与光度之间存在着确定的关系。于是可以通过测量它的光变周期来定出广度,再求出距离。如果银河系外的星系中有颗造父变星,那么我们就可以知道这个星系与我们之间的距离了。那些连其中有没有造父变星都无法观测到的更遥远星系,当然要另外想办法。

三角视差法和造父视差法是最常用的两种测距方法,前一支的尺度是几百光年,后一支是几百万光年。在中间地带则使用统计方法和间接方法。最大的量天尺是哈勃定律方法,尺度达100亿光年数量级。

哈勃定律方法

1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。现代精确观测已证实这种线性正比关系

V = H0×d

其中v为退行速度,d为星系距离,H0=100h0km.s-1Mpc(h0的值为0<h0<1)为比例常数,称为哈勃常数。这就是著名的哈勃定律。

利用哈勃定律,可以先测得红移Δν/ν通过多普勒效应Δν/ν=V/C求出V,再求出d。

哈勃定律揭示宇宙是在不断膨胀的。这种膨胀是一种全空间的均匀膨胀。因此,在任何一点的观测者都会看到完全一样的膨胀,从任何一个星系来看,一切星系都以它为中心向四面散开,越远的星系间彼此散开的速度越大。

参考资料:http://zhidao.baidu.com/question/12486341.html?si=2

方法多了去了!

太阳系内天体:

三角测量法
雷达测距法
激光测距法

太阳系外较近的天体:

三角视差法
分光视差法
威尔逊-巴普法
星际视差法
力学视差法
星群视差法
统计视差法
自转视差法

太阳系外的远天体:

利用天琴座RR型变星
利用造父变星
利用角直径
主星序重叠法
利用新星和超新星
利用亮星
利用累积星等
利用谱线红移

详细介绍:

测量方法(太阳系内天体)
三角测量法
  用于测定月球、行星的周日地平视差,由此可以求得它们的距离。根据天体力学的理论,利用行星的周日地平视差,可以求得太阳的周日地平视差(即太阳视差),由此可以求得地球和太阳之间的平均距离。这是二十世纪六十年代以前测定太阳距离的常用方法。
雷达测距法
  通过向月球和大行星(如金星、火星、水星等)发射无线电脉冲,然后接收从它们表面反射的回波,并将电波往返的时间精确地记录下来,便能推算出天体的距离。雷达测距法目前已成为测量太阳系内某些天体的基本方法之一。1946年首次用这一方法成功地测定了月球的距离,1957年月距的测定精度已优于一公里。自1961年起,对金星、火星和水星等多次进行雷达测距。对大行星的雷达测距还为测定地球和太阳间平均距离提供了最优的方法。根据对金星的雷达测距求得的日地间平均距离的数值是迄今最精确的(见雷达天文方法)。
激光测距法
  它比雷达测距法更精确。但目前只适用于很近的天体,如人造卫星和月球。它的工作原理与雷达测距法相似。

测量方法(太阳系外较近的天体 )
三角视差法
  对离太阳 100秒差距范围以内的近距星,都可利用三角视差法测定它们的距离。但对距离超过50秒差距的天体,此法所测得的距离已不够准确。三角视差法迄今仍是测定太阳系外天体距离的最基本方法。用其他方法测得的距离都要用三角视差法来校准。
分光视差法
  分析恒星谱线以测定恒星距离的一种方法。以秒差距为单位的恒星距离r与它的视星等m(见星等)和绝对星等M之间存在下列关系: 5lgr=m-M +5。   根据恒星谱线的强度或宽度差异,估计恒星的绝对星等,再从观测得到恒星的视星等,由上式求得恒星的距离。由于星际消光对M和m有影响,用分光视差法测定恒星的距离必须计及星际消光这个很复杂的因素。
威尔逊-巴普法
  1957年,O.C.威尔逊和巴普两人发现,晚型(G、K和M型)恒星光谱(见恒星光谱分类)中电离钙的反转发射线宽度的对数与恒星的绝对星等之间存在着线性关系。对这条谱线进行光谱分析,便可得到晚型恒星的距离。
星际视差法
  在恒星的光谱中出现有星际物质所产生的吸收线。这些星际吸收线的强度与恒星的距离有关:星越远,星和观测者之间存在的星际物质越多,星际吸收线就越强。利用这个关系可测定恒星的距离。常用的星际吸收线是最强的电离钙的K线和中性钠的D双线。不过这个方法只适用于O型和早B型星,因为其他恒星本身也会产生K线和D线,这种谱线同星际物质所产生的同样谱线混合在一起无法区分。由于星际物质分布不均匀,一般说来,用此法测得的距离,精度是不高的。
力学视差法
  目视双星的相对轨道运动遵循开普勒第三定律,即伴星绕主星运转的轨道椭圆的半长径的立方与绕转周期的平方成正比。设主星和伴星的质量分别为m1和m2,以太阳质量为单位表示,绕转周期P以恒星年(见年)为单位表示,轨道的半长径的线长度A以天文单位表示,这种双星在观测者处所张的角度 α以角秒表示,则其周年视差π为: ,   式中α和P可从观测得到。因此,如果知道双星的质量,便可按上述公式求得该双星的周年视差。如果不知道双星的质量,则用迭代法解上式,仍可求得较可靠的周年视差。周年视差的倒数就是该双星以秒差距为单位的距离。
星群视差法
  移动星团的成员星都具有相同的空间速度。由于透视作用,它们的自行会聚于天球上的一点或者从某点向外发散,这个点称为“辐射点”。知道了移动星团的辐射点位置,并从观测得到n个成员星的自行μk 和视向速度V 噰(k=1,2,…,n),则该星团的平均周年视差为:   式中θk为第k个成员星和辐射点的角距,堸 为 n个成员星的空间速度的平均值。这样求得的周年视差的精度很高。但目前此法只适用于毕星团。其他移动星团因距离太远,不能由观测得到可靠的自行值。
统计视差法
  根据对大量恒星的统计分析资料,知道恒星的视差与自行之间有相当密切的关系:自行越大,视差也越大。因此对具有某种共同特征并包含有相当数量恒星的星群,可以根据它们的自行的平均值估计它们的平均周年视差。这样得到的结果是比较可靠的。
自转视差法
  银河系的较差自转(即在离银河系核心的距离不同处,有不同的自转速率)对恒星的视向速度有影响。这种影响的大小与星群离太阳的距离远近有关,因此可从视向速度的观测中求出星群的平均距离。这个方法只能应用于离太阳不太远,距离大约在1,200秒差距以内的恒星。
太阳系外的远天体
利用天琴座RR型变星
  这类变星的特点是:尽管光变周期长短不同,而它们的光度是相同的,绝对星等差不多都在+0.5等左右。因此,先通过观测得到它们的视星等,再把视星等同上述绝对星等数值作比较,便可求得含有这类变星的球状星团的距离。这类变星由于光度大,光变周期为0.05~1.5天,显得特别引人注目,所以可作为相当理想的“距离指示器”。
利用造父变星
  这类变星的光变周期长,而且它们的光度和光变周期之间有一种确定的周光关系,即光度越大,光变周期越长。应用这种关系,便可根据观测得到的光变周期计算它们的绝对星等,再将算出的绝对星等同视星等作比较,就可求得这类变星及其所在星团或较近的河外星系的距离。
利用角直径
  假如各个球状星团或星系的线直径 D(以天文单位表示)大致是相等的,则通过观测得到它们的角直径d(以角秒为单位),就可求得星团或星系的距离r(以秒差距为单位): 。   但实际上,无论是球状星团,还是各类星系,它们的线直径相差不小,而且要确定它们的角直径也很困难,所以用这个方法求得的距离是很粗略的。
主星序重叠法
  这个方法的出发点是:认为所有主序星都具有相同的性质,同一光谱型的所有主序星都具有相同的绝对星等。可以把待测星团的赫罗图(以色指数为横坐标,视星等为纵坐标)同太阳附近恒星的赫罗图(以色指数为横坐标,以绝对星等为纵坐标)相比较,使这两个图的主星序重叠。根据纵坐标读数之差即星团的主序星的视星等和绝对星等之差,可算出该星团的距离。也可以把待测星团的主星序同已知距离的比较星团的主星序相重叠,则纵坐标读数之差就是两星团的主序星的视星等之差,由此可以求得这两个星团的相对距离。根据比较星团的已知距离,便得到所测星团的距离。这是测定银河星团和球状星团的距离的一种有效方法。
利用新星和超新星
  新星和超新星的光度变化都具有这样一个特征:在不长的时间内光度便达到极大值,而且所有新星或属同一类型的超新星的最大绝对星等变化范围不大。因此,可先取它们的平均值作为一切新星或属同一类型的超新星的最大绝对星等,再把它同观测到的最大视星等相比较,便可定出该新星或超新星所在星系的距离。
利用亮星
  对于河外星系,可以认为它们所包含的亮星的平均绝对星等与银河系里属于同一类型星的平均绝对星等是相同的。因此,可以先通过观测得到这些亮星的视星等,然后把它们同上述平均绝对星等作比较,以求得河外星系的距离。
利用累积星等
  球状星团的累积星等变化范围不大,可先取其平均值作为所有球状星团的累积绝对星等,再从观测得到所测星团的累积视星等,便可算出该球状星团的距离。此法也可用于河外星系,但必须考虑到星系的形态类型,不同类型星系的累积平均绝对星等应取不同的数值。
利用谱线红移
  观测表明,在目前光学望远镜和射电望远镜所及的空间范围内,河外星系的谱线都有红移现象,而且红移量同星系的距离成正比。以r表示星系的距离,c表示光速,λ表示波长,Δλ表示波长的变化量,则: ,   式中Δλ/λ为红移量,哈勃常数H=50公里/(秒·百万秒差距)。因此,只要测量出星系的谱线红移量,便可推算出星系的距离。   测定天体的距离是天体测量最重要的研究课题之一,尽管方法很多,但要得到可靠的结果是不容易的。因此,对于某一天体,应尽可能采用几种方法分别测定它的距离,然后相互校核,才能得到可靠的结果。

星系之间总会有很大的空间,那些空间里面是没有什么恒星的,所以天文学家在搜寻恒星的过程中找到距离最远的单个恒星,外面没有更远的恒星了,就可以视为那是我们银河系的边界。

对于恒星的距离,用造父变星就能得出。

只有 晚上 多观察 记录 白天问 太阳 然后 对应 天空 让卫星分析 才知道最精确 答案

用激光算的

  • ...问一下:人类是怎么测量宇宙中星与星之间几光年远的距离
    答:离我们比较近的天体,它们离我们最远不超过100光年(1光年=9.461012千米),天文学家用三角视差法测量它们的距离。三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳...
  • 天文学家是怎样知道一个天体距离我们有几万甚至几十万光年的距离的?
    答:500--10万光年的天体采用光度法确定距离。 10万光年以外天文学家找到了造父变星作为标准,可达5亿光年的范围。 更远的距离是用观测到的红移量,依据哈勃定理推算出来的其他测量方法详解三角测量法 用于测定月球、行星的周日地平视差,由此可以求得它们的距离。根据天体力学的理论,利用行星的周日地平视差,可以求得太阳的...
  • 天体之间的距离动辄上百万光年,科学家是如何知道的?
    答:一、视差法,视差法是德国的天文学家贝塞尔发明的计算行星和地球之间的距离的一种方法。他的原理是:当人的眼睛去观察一颗距离地球大约100光年的行星,那么对于比这颗行星更远的星球来说,这颗行星会产生一段距离的移动,这是由于人在地球的另一端以不同的角度观察它产生的一种现象,我们把所观察到行...
  • 如何知道一个天体距离地球多远?
    答:太阳是一个炽热的气体球,测定太阳的距离不能像测定月球距离那样直接用三角视差法。早期测定太阳的距离是借助于离地球较近的火星或小行星。先用三角视差法测定火星或小行星的距离,再根据开普勒第三定律求太阳距离。1673年法国天文学家卡西尼(Dominique Cassini)首次利用火星大冲的机会测出了太阳的距离。许多...
  • 总听说某某星球距地球多少多少光年,那那些天文学家是怎么测量出来的啊...
    答:较远的恒星,可以以某种超新星的亮度为标准,对比该星的亮度进行推算.我 们可以想象,一个一百W的灯,它定是越近越亮越远越暗.还有,由于宇宙是膨胀的,宇宙膨胀会使物体间产生一个相离的速度,速度的大小与物体这间的距离成正比,因而,我们只要测出了恒星的红移值,算出了它的相离速度,再根据哈弗常数,就...
  • 天文学家是怎么知道各个星球与我们地球之间距离的?
    答:在天文学上几个主要的天体测距法。就按照由近及远说吧!最直接的方法就是三角测量法,也就是视差测定,这是一个简单的数学计算,只不过为了使视差明显一点,通常以半年为周期,也就是地球位置变化最大的时候作为三角形的一个边。(欢迎大家来阅读我的文章,我们每天会分享不一样的新鲜内容,如果我的...
  • 天文学家如何知道星球距离我们多远呢,依据是什么?
    答:天文学家测量星球距离我们多远,运用了多种方法。目前学术界用来测量天体距离的方法主要有电磁波反射、视差法、主序星重叠法、多普勒红移法等。电磁波反射适用于1光时内天体距离的,这个就不细说了。三角视差法主要是用来测量300光年以内天体距离。三角视差法是一种利用不同视点对同一物体的视差来测定距离...
  • 很多科学计算的比如某某天体离我们多少光年、十几光年、几百、几千...
    答:对于比较近的天体(1000光年以内),地球的公转在空间位置中的变化,会导致它们在天球背景上的位置出现略微的移动,天文学上称之为视差。可以通过时差的大小推算出天体的距离,并且衍生出了专门的单位——秒差距。天文学上有一个常用的星表,伊巴谷星表(HIP),其中按照赤经以此排列了亮度13等以上并且...
  • 怎么测量星球和星球之间的距离
    答:人们总希望知道天体离我们有多远,天体距离的测量也一直是天文学家们的任务.不同远近的天体可以采不同的测量方法.随着科学技术的发展,测定天体距离的手段也越来越先进.由于天空的广袤无垠,所使用测量距离单位也特别.天文距离单位通常有天文单位(AU)、光年(ly)和秒差距(pc)三种.2.3.1月球与地球的距离 ...