红外光谱

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-03
什么是红外光谱

红外光谱原理概述
红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。
人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。
当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。

朋友可以到行业内专业的网站进行交流学习!
分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

红外光谱的原理
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。
当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。
红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。
并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。
分子的振动形式可以分为两大类:伸缩振动和弯曲振动。前者是指原子沿键轴方向的往复运动,振动过程中键长发生变化。后者是指原子垂直于化学键方向的振动。通常用不同的符号表示不同的振动形式,例如,伸缩振动可分为对称伸缩振动和反对称伸缩振动,分别用 Vs 和Vas 表示。弯曲振动可分为面内弯曲振动(δ)和面外弯曲振动(γ)。
从理论上来说,每一个基本振动都能吸收与其频率相同的红外光,在红外光谱图对应的位置上出现一个吸收峰。实际上有一些振动分子没有偶极矩变化是红外非活性的;另外有一些振动的频率相同,发生简并;还有一些振动频率超出了仪器可以检测的范围,这些都使得实际红外谱图中的吸收峰数目大大低于理论值。
组成分子的各种基团都有自己特定的红外特征吸收峰。不同化合物中,同一种官能团的吸收振动总是出现在一个窄的波数范围内,但它不是出现在一个固定波数上,具体出现在哪一波数,与基团在分子中所处的环境有关。
引起基团频率位移的因素是多方面的,其中外部因素主要是分子所处的物理状态和化学环境,如温度效应和溶剂效应等。
对于导致基团频率位移的内部因素,迄今已知的有分子中取代基的电性效应:如诱导效应、共轭效应、中介效应、偶极场效应等;机械效应:如质量效应、张力引起的键角效应、振动之间的耦合效应等。

这些问题虽然已有不少研究报道,并有较为系统的论述,但是,若想按照某种效应的结果来定量地预测有关基团频率位移的方向和大小,却往往难以做到,因为这些效应大都不是单一出现的。这样,在进行不同分子间的比较时就很困难。
另外氢键效应和配位效应也会导致基团频率位移,如果发生在分子间,则属于外部因素,若发生在分子内,则属于分子内部因素。
红外谱带的强度是一个振动跃迁概率的量度,而跃迁概率与分子振动时偶极矩的变化大小有关,偶极矩变化愈大,谱带强度愈大。偶极矩的变化与基团本身固有的偶极矩有关,故基团极性越强,振动时偶极矩变化越大,吸收谱带越强;分子的对称性越高,振动时偶极矩变化越小,吸收谱带越弱。
拓展资料
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。

红外光谱的分区
通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。
由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红外区是研究和应用最多的区域,积累的资料也最多,仪器技术最为成熟。通常所说的红外光谱即指中红外光谱。

应用
红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。
红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。
红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。
另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。
红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。
例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠加在一起,在3402厘米处出现一条宽谱带,它的变角振动v2位于1647厘米。
在重水中,由于氘的原子质量比氢大,使重水的v1和v3重叠谱带移至2502厘米处,v2为1210厘米。以上现象说明水和重水的结构虽然很相近,但红外光谱的差别是很大的。
红外光谱具有高度的特征性,所以采用与标准化合物的红外光谱对比的方法来做分析鉴定已很普遍,并已有几种标准红外光谱汇集成册出版,如《萨特勒标准红外光栅光谱集》收集了十万多个化合物的红外光谱图。近年来又将些这图谱贮存在计算机中,用来对比和检索。
参考资料:百度百科:红外光谱

一、红外光谱的基本原理

分子运动包括分子整体的转动、组成原子的振动和分子中电子的运动。分子的每一运动状态都具有一定的能量。在分子中,各原子靠相互的键力作用维持在平衡位置,并在平衡位置附近作微小的振动,构成分子的振动模式。分子的振动在一般的情况下是复杂的,因此在一定条件下可把分子的振动看作是几种相互独立的较简单的振动方式的叠加。这些相互独立的较简单的振动方式转为简正振动模式。每种简正振动模式有其特征频率(v),各种简正振动频率由分子的几何构型、原子间的键力场及原子的质量等因素决定的。

分子在作频率为v的简正振动时,它的振动能量为:En=(1/2+n)hv式中,n是振动能级的振动量子数,取整数0,1,2,…,h是普朗克常量。

振动基态E0称为零点振动能,即便是在绝对零度时也存在零点振动能。当入射光子的能量hv恰好等于振动的能级差时,分子有可能吸收光子能量而发生振动状态的跃迁。

可见,hv=E1-E0=hv0。当入射光的频率等于分子的一个简正振动频率(v=v0)时,则分子有可能吸收光的能量,从基态跃迁到第一激发态。按经典理论的说法,就是由于入射光的频率等于振动的固有频率,使分子对光能发生共振吸收(图13-5-1)。

图13-5-1 红外光谱振动基态

产生红外吸收的条件,除了上述的跃迁规律外,同时还必须具有偶极矩的变化,这种振动方式称为红外活性的,反之,在振动过程中偶极矩不发生变化的振动方式是非红外活性的,虽然有振动,但不能吸收红外辐射。一个多原子分子可具有3N-6种(N为组成分子的原子数)简谐振动(对于线性分子只有3N-5种),各种简谐振动具有一定的能量,在特有的波数位置上应产生吸收,即每种简谐振动相应有一个振动频率。在各种简谐振动中,有的振动属于非红外活性,有的因具有相同的振动频率(但方向相反)而产生振动简并。所以,红外振动频率数目总是少于振动形式数目3N-6(或3N-5),分子对称型越高,简并越多,振动频率越少于振动数目。

测量和记录红外吸收光谱的仪器称为红外分光光度计。根据分光原理的不同,红外分光光度计可分为两大类型:色散型和干涉型。色散型红外分光光度计依据光的折射和衍射,采用色散元件(棱镜或光栅)进行分光;干涉型红外分光光度计则是基于光相干性原理利用干涉仪达到分光的目的。再根据数学上的傅立叶变换函数的特性对干涉仪进行改进,并利用计算机将其光源的干涉图转换成光源的光谱图,故又称为傅立叶红外分光光度计(fTIR)。

由于傅立叶变换红外分光光度计屏弃了狭缝装置,使得它在任何测量时间内都能够获得辐射源的所有频率的全部信息,同时也消除了狭缝对光谱能量的限制,使得光能的利用率大大提高,即所谓能量输出大,因而它在实际使用上有很多优点。提高了灵敏度、分辨率和精度(0.01cm-1),减少了杂散光。

二、红外光谱的解析

红外区的划分

珠宝玉石学GAC教程

(1)近红外光区:其吸收带主要是由低能电子跃迁、含氢原子团伸缩振动的倍频吸收等产生的。该区的光谱可用于研究稀土和其他过渡金属离子的化合物,及水、含氢原子团化合物的分析(如胶、蜡和宝玉石中的有机染料)。

(2)中红外光区:该区的吸收带主要为基频吸收带,由于基频振动是红外光谱中吸收最强的振动,故此区最宜用于对宝玉石进行红外光谱的定性和定量分析。①在4000~1250cm-1称为特征频率区,此区的吸收峰较疏,主要包括:含有氢原子的单键、各种三键和双键的伸缩振动的基频峰;②1250~400cm-1频区是宝石矿物鉴定的指纹区。所出现的谱带相当于各种单键的伸缩振动,以及多数基团的弯曲振动。③相关频率:特征频率可以证明官能团的存在,但多数情况下,一个官能团有数种振动形式,而每一种红外活性振动都有一个相应的吸收峰,有时还能观察到倍频峰,因而不能由单一特征峰肯定官能团的存在。特征频率是与相关频率相互依存的吸收峰,其数目是由分子结构和光谱图的波长范围决定的。在中红外光谱区,多数基团都有一组相关峰。

(3)远红外光区:该区的吸收带主要与气体分子中的纯转动跃迁、振动-转动跃迁,一般不在此区范围内进行宝玉石分析。

三、试样的制备

现代的傅立叶红外光谱仪附有显微透射和反射红外光谱装置,可以不破坏样品直接检测。对不透明的宝石采用反射红外光谱装置检测,对透明的宝石采用透射红外光谱装置检测。对于宝石矿物原料则采用粉末法制备样品。粉末法制备样品制备的方法主要有2种:压片法和糊状法。

(1)压片法:一般将宝玉石样品取下1~3mg,放在玛瑙研钵中制成粉末,加100~300mg KBr混合研磨均匀,再加入到压模内,压制成一定直径或厚度的透明片。然后进行测定。

(2)糊状法:如果是研究宝玉石中的氢的存在形式,则将试样研成粉末后和石蜡油混合研磨制成糊膏,以减少在样品中的散射。

一般来说,在制备试样时应注意以下几点:①试样最好是单一组分的物质;②试样的浓度或测试厚度应选择适当,以使光谱中大多数吸收峰的透光度处于15%~70%范围内;③试样中不应含有游离水。

四、红外光谱在宝石学中的应用

红外光谱是振动光谱,它是物质内部的显微结构和键合的灵敏探测器。根据所观测到的吸收峰的位置、对称性和相对强度,可提供非常有用的结构和成分信息。利用特征吸收谱带的频率,推断分子中存在某一基团成键。进而再由特征吸收谱带频率的位移,推断邻接基团的特征,由分子的特征吸收谱带强度的改变,可对其混合物和化合物进行定量分析。

红外光谱图的表示:纵坐标表示透过率(或吸收率),横坐标表示波长(nm)或频率(cm-1)。红外光谱在宝玉石学中有着广泛的应用。

(1)宝玉石物相的鉴定:与钻石相似的无色宝石,如无色的立方氧化锆、钇铝榴石和锡石等和钻石十分相似,但它们的红外光谱图有明显的区别。

(2)钻石类型的判定:如图13-5-2是用FTIR判定钻石类型的一个好方法。

图13-5-2 用红外光谱(FTIR)判定钻石类型

图13-5-3 金刚石的红外光谱图

(3)浸染宝玉石的检测:如翡翠的A、B和C货的检测,镀膜处翡翠的鉴定。

(4)近红外区是宝玉石中碳、氢和氧等元素存在形式研究的特征区。矿物中若有水分子存在,则它的组合频和倍频均在近红外区(如绿柱石和电气石等)。红外光谱图中(图13-5-3)显示IIb型金刚石结构中存在H2分子,其振动谱峰位于4106cm-1



  • 红外光谱所吸收的电磁波是
    答:红外光谱所吸收的电磁波是红外光。红外光谱(infrared spectroscopy,IR),属于分子振动-转动光谱,是分子吸收红外光时,振动能级和转动能级发生跃迁而产生的分子吸收光谱。其光谱仪通过记录红外光的透射率与其波长或波数的关系曲线,得到红外光谱图,再对其图谱进行解析便可获取分子结构的信息。红外光谱的用途 ...
  • 红外光谱法有什么特点?
    答:红外光谱法的特点:特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。产生红外吸收的条件:1、辐射后具有能满足物质产生振动跃迁所需的能量。2、分子振动有瞬间偶极距变化。当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率...
  • 怎么看红外光谱图?
    答:纵轴 %T :T代表透过率(transmittance),%是透过率的单位。横轴 cm-1:cm-1是波数(wavenumber)的单位.波数是原子、分子和原子核的光谱学中的频率单位.符号为σ或v.等于真实频率除以光速,即波长(λ)的倒数,或在光的传播方向上每单位长度内的光波数。在波传播的方向上单位长度内的波周数目称为波数...
  • 红外吸收光谱法
    答:红外光谱仪经历了用棱镜或衍射光栅分光的色散型,于20世纪70年代已发展成为傅立叶变换(Fourier Transform,缩写为FT)的干涉型,其分析原理示意图如图5-10所示。图5-10 色散型和干涉型红外光谱仪原理示意图 物质产生红外吸收,其分子振动模式必须满足两个条件:①分子振动伴有瞬时偶极矩变化;②分子振动...
  • 红外光谱的单位是
    答:红外光谱的单位是波数(cm-1)。波数是一种表示光波频率的单位,表示每厘米中所包含的波长数目。在红外光谱中,波数可以用来描述物质分子中的化学键振动和分子转动等信息。波数的数值越大,对应的波长越短,频率越高,反之亦然。
  • 红外光谱产生的两个必要条件
    答:红外光谱产生的两个必要条件是辐射应具有能满足物质产生振动跃迁所需的能量,辐射与物质间有相互偶合作用。红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集...
  • 红外光谱原理是什么?
    答:红外光谱原理是红外光谱是一种分子吸收光谱,利用红外光谱法对有机物进行定性和定量的检测,通过红外线光谱仪发出红外线光线,再将光线照射到待检测物体的表面,有机物因其吸收特性会吸收红外光,从而产生红外光谱图。技术人员可根据红外光谱图找到与吸收峰相对应的化学基团数据库,对待测物质的构成和所属...
  • 红外光谱的应用
    答:红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠加在一起,在3402厘米处...
  • 红外光谱区的范围是多少
    答:范围是:(0.75μm~300μm)通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。由于绝大多数有...
  • 拉曼光谱和红外光谱有什么区别
    答:拉曼光谱和红外光谱的区别如下:一、区别:1、产生机理不同,红外光谱吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼光谱是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。2、红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光可见光...