高等数学中两个重要极限公式怎么得来的

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-02
微积分里的两个重要极限指什么

两个重要极限:

极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。

扩展资料:
十七世纪以来,微积分的概念和技巧不断扩展并被广泛应用来解决天文学、物理学中的各种实际问题,取得了巨大的成就。但直到十九世纪以前,在微积分的发展过程中,其数学分析的严密性问题一直没有得到解决。
十八世纪中,包括牛顿和莱布尼兹在内的许多大数学家都觉察到这一问题并对这个问题作了努力,但都没有成功地解决这个问题。
整个十八世纪,微积分的基础是混乱和不清楚的,许多英国数学家也许是由于仍然为古希腊的几何所束缚,因而怀疑微积分的全部工作。
这个问题一直到十九世纪下半叶才由法国数学家柯西得到了完整的解决,柯西极限存在准则使得微积分注入了严密性,这就是极限理论的创立。极限理论的创立使得微积分从此建立在一个严密的分析基础之上,它也为20世纪数学的发展奠定了基础。
第一个为补救第二次数学危机提出真正有见地的意见的是法国数学家达朗贝尔。他在1754年指出,必须用更可靠的理论去代替当时使用的粗糙的极限理论。但是他本人未能提供这样的理论。最早使微积分严格化的是拉格朗日。
为了避免使用无穷小推理和当时还不明确的极限概念,拉格朗日曾试图把整个微积分建立在泰勒公式的基础上。但是,这样一来,考虑的函数范围太窄了,而且不用极限概念也无法讨论无穷级数的收敛问题,所以,拉格朗日的以幂级数为工具的代数方法也未能解决微积分的奠基问题。
到了19世纪,出现了一批杰出的数学家,他们积极为微积分的奠基工作而努力,其中包括了捷克的哲学家波尔查诺,他曾著有《无穷的悖论》,明确地提出了级数收敛的概念,并对极限、连续和变量有了较深入的了解。
分析学的奠基人,法国数学家柯西在1821—1823年间出版的《分析教程》和《无穷小计算讲义》是数学史上划时代的著作。在那里他给出了数学分析一系列的基本概念和精确定义。
参考资料:
微积分(数学概念)_百度百科

LZ,条件是不够的。学高数一定要把握好条件。缺了两点第一,x趋向于什么?(正负)无穷,还是x0(左右)。第二,f,g的极限是否存在。
这样,我就按照条件叙述完的情况给LZ说吧。证明大概是这样。
由于f(x),g(X)极限存在且分别为A,B则α(X),β(x)为无穷小。因此Aβ(x)+Bα(x)+α(x)β(x)为无穷小
又f(x)g(X)=[A+α(X)][B+β(x)]=AB+Aβ(x)+Bα(x)+α(x)β(x)
故不管x趋向于神马,lim[f(x)g(x)]=AB。
当然,这种证明是假定楼主知道无穷小的概念,以及无穷小与无穷小或常数的乘积仍然为无穷小这两个定理的。
如果不知道的话,具体的证明应当是这样。(假定为x趋向x0时的极限)假设f(x),g(X)极限存在且分别为A,B
则对任意的ε>0,存在δ1,δ2使得x在x0的δ1空心领域有|f(x)-A|<ε,在x0的δ2空心领域|g(X)-B|<ε
则取δ=max{δ1,δ2},使得当x在x0的δ空心领域时 有|f(x)g(X)-AB|=|(f(x)-A)g(x)+A(g(x)-B)|<=|(f(x)-A)g(x)|+|A(g(x)-B)| 由于g(x)极限存在,则由局部有界性,对正数M有|g(x)|<=M则上式有
|f(x)g(X)-AB|=|(f(x)-A)g(x)+A(g(x)-B)|<=|(f(x)-A)g(x)|+|A(g(x)-B)|<=M|(f(x)-A)|+|A||(g(x)-B)|<(M+|A|)ε
则由于ε的任意性知道,当x趋向x0时lim[f(x)g(x)]=AB

两个都可以用导数的定义来证明,或者是洛必达法则。第一个是sinx在(0,0)处的导数。第二个先取对数In,是In(x+1)的导数,算出来是1,结果是e∨1。

1、利用定义求极限:
例如:很多就不必写了!
2、利用柯西准则来求!
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数n,使得当n>n时,对于
任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求!
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即:夹挤定理!
例子就不举了!
5、利用变量替换求极限!
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
  x->0
(2)lim
(1+1/n)^n=e
  n->∞ 
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限
9、用洛必达法则求,这是用得最多得。
10、用泰勒公式来求,这用得也十很经常得。

  • 极限函数有哪些公式
    答:lim极限函数公式总结:lim((sinx)/x)=1(x->0)。两个重要极限:设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn}收敛于a。如果上述条件不成立,...
  • 两个重要极限公式是什么?
    答:lim((sinx)/x)=1(x->0),lim(1+(1/x))^x=e(x→∞)。极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘...
  • 请问重要极限公式都有哪些啊?
    答:在高等数学中,重要的极限公式有二个。证明这两个极限所用的方法,是极限中的最重要的概念及技巧。
  • 如何证明高等数学两个重要极限公式
    答:两个都可以用导数的定义来证明,或者是洛必达法则。第一个是sinx在(0,0)处的导数。第二个先取对数In,是In(x+1)的导数,算出来是1,结果是e∨1。
  • 高数两个重要极限公式
    答:lim((sinx)/x)=1(x->0),lim(1+(1/x))^x=e(x→∞)。极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘...
  • 高等数学重要极限公式有哪些呢?
    答:答: 高数中,重要极限公式主要有两个:未完待续 其他的极限公式,或者根据基本初等函数的图像,或者是常用的等价无穷小(无穷大)。例如:未完待续 倒是需要掌握一些求极限的基本方法:如:有理化、取对数求极限等。供参考,请笑纳。
  • 关于高数中两个重要极限的问题
    答:“大于1的数的无穷大次方是无穷大”这是有问题的。因为1+x并不是一个确定的数!x在变化,当x->0+的时候就有极限了。如果(1+0.1)exp(1/x)当x->0+时,才有你说的情况。在高数后面就会看到,1exp(∞),(∞)exp(0)这种情况都是不定式,它们有可能趋近于无穷大,也可能趋近一个数。
  • 高等数学中的第二重要极限是什么?
    答:第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当 x → ∞ 时,(1+1/x)^x的极限等于e;或 当 x → 0 时,(1+x)^(1/x)的极限等于e。第二个要看场合,在整体乘除运算时等价无穷大可以替代,加减运算不能替代。在幂指函数求极限中不能代替,因为取对数时除法变减法,...
  • 常用的重要极限有哪几个?
    答:则当X趋近X0,有limF(x)≤limf(x)≤limG(x)即A≤limf(x)≤A 故limf(X0)=A。简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个就是夹逼定理。2、单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的...
  • 两个重要极限的应用
    答:两个重要极限的应用如下:一、第一个重要极限:lim ((sinx)/x)=1 (x->0)在数学中,当我们考虑一个变量趋近于无穷小或无穷大的时候,我们常常需要引入无穷小量的概念。这个极限告诉我们,当x趋近于0时,sinx与x的比值趋近于1。这意味着在x接近0的情况下,正弦函数的行为与直线的行为非常接近。二...