变压器是什么?有什么用处

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-06-16
变压器有什么作用?

变压器是电力系统中的重要元件。由于将大功率的电能从发电站输送到远距离的用电区,输电线路的电压越高,输电线路中的电流和损耗就越小,所以高压输电是较为经济的。
我国现有高压线路的输电电压为110kV、220kV、330kV、500kV及750kV等几种。发电机发出的电压受其绝缘条件的限制不可能太高,一般为6.3~27kV。因此,需用升压变压器把发电机发出的电压升高后送入输电线路。电能被输送到用电地区后,还要用降压变压器把输电电压降低为配电电压,然后再输送到各用电分区,最后再经配电变压器把电压降到用户所需要的电压等级,供用户使用。故从发电、输电、配电到用户,通常需要经过多次升压和降压。一般变压器的安装容量与发电机的容量之比为6∶1。
另外,变压器的用途还很多,如测量系统中广泛应用的仪用互感器,可将高电压变换成低电压或将大电流变换成小电流,以隔离高压和便于测量;在实验室中广泛应用的自耦调压器,可任意调节输出电压的大小,以适应负载的要求;在电信、自动控制系统中,控制变压器、电源变压器、输入及输出变压器等也已得到广泛应用。
总之,变压器的应用非常广泛,变压器的生产和使用具有重要意义。

1、变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。

2、主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。

按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。

扩展资料:

历史发展:

变压器变压原理首先由法拉第发现,但是直到十九世纪80年代才开始实际应用。在发电场应该输出直流电和交流电的竞争中,交流电能够使用变压器是其优势之一。

变压器可以将电能转换成高电压低电流形式,然后再转换回去,因此大大减小了电能在输送过程中的损失,使得电能的经济输送距离达到更远。如此一来,发电厂就可以建在远离用电的地方。世界大多数电力经过一系列的变压最终才到达用户那里的。

参考资料来源:百度百科——变压器



变压器

变压器的是一种常见的电气设备, 可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。

变压器的意义

发电厂欲将P=3UIcosφ的电功率输送到用电的区域,在P、cosφ为一定值时,若采用的电压愈高,则输电线路中的电流愈小,因而可以减少输电线路上的损耗,节约导电材料。 所以远距离输电采用高电压是最为经济的。

目前,我国交流输电的电压最高已达500kV。这样高的电压,无论从发电机的安全运行方面或是从制造成本方面考虑,都不允许由发电机直接生产。 发电机的输出电压一般有3.15kV、6.3kV、10.5 kV、 15.75 kV等几种,因此必须用升压变压器将电压升高才能远距离输送。

电能输送到用电区域后,为了适应用电设备的电压要求,还需通过各级变电站(所)利用变压器将电压降低为各类电器所需要的电压值。

在用电方面,多数用电器所需电压是380V、220V或36 V,少数电机也采用3kV、6kV等。

变压器分类

按其用途不同,有电源变压器、电力变压器,调压变压器,仪用互感器,隔离变压器。按结构分为双绕组变压器、三绕组变压器、多绕组变压器及自耦变压器。按铁心结构分为壳式变压器和心式变压器。按相数分为单相变压器、三相变压器和多相变压器。变压器的种类虽多,但基本原理和结构是一样的。

变压器的基本结构

(1)铁心

变压器压器由套在一个闭合铁心上的两个或多个线圈(绕组)构成,

铁心和线圈是变压器的基本组成部分。铁心构成了电磁感应所需的磁路。为了减少磁通变化时所引起的涡流损失,变压器的铁心要用厚度为0.35~0.5mm的硅钢片叠成。片间用绝缘漆隔开。铁心分为心式和客式两种。

(2)线圈

变压器和电源相连的线圈称为原绕组(或原边, 或初级绕组),其匝数为N 1 ,和负载相连的线圈称为副绕组(或副边, 或次级绕组),其匝数为N 2 。绕组与绕组及绕组与铁心之间都是互相绝缘的。

变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。一、变压器的基本原理 图1是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈 而改变次级电压,但是不能改变允许负载消耗的功率。二、变压器的损耗当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡流”。这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。由“涡流”所产生的损耗我们称为“铁损”。另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。所以变压器的温升主要由铁损和铜损产生的。由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数来对此进行描述,η=输出功率/输入功率。三、变压器的材料要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知识。1、铁心材料:变压器使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000,2、绕制变压器通常用的材料有漆包线,沙包线,丝包线,最常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下最好用Q2型号的高强度的聚脂漆包线。3、绝缘材料在绕制变压器中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。4、浸渍材料:变压器绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度

1.变压器的构造
原线圈、 副线圈、 铁心
2.变压器的工作原理
在原、副线圈上由于有交变电流而发生的互相感应现象,叫做互感现象,互感现象是变压器工作的基础。
3.理想变压器
磁通量全部集中在铁心内,变压器没有能量损失,输入功率等于输出功率。
4.理想变压器电压跟匝数的关系:
U1/U2= n1/n2
说明:对理想变压器各线圈上电压与匝数成正比的关系,不仅适用于原、副圈只有一个的情况,而且适用于多个副线圈的情况。即有 =……。这是因为理想变压器的磁通量全部集中在铁心内。因此穿过每匝线圈的磁通量的变化率是相同的,每匝线圈产生相同的电动势,因此每组线圈的电动势与匝数成正比。在线圈内阻不计的情况下,每组线圈两端的电压即等于电动势,故每组电压都与匝数成正比。
5.理想变压器电流跟匝数的关系
I1/I2= n2/n1 (适用于只有一个副线圈的变压器)
说明:原副线圈电流和匝数成反比的关系只适用于原副线圈各有一个的情况,一旦有多个副线圈时,反比关系即不适用了,可根据输入功率与输出功率相等的关系推导出:U1I1= U2I2+ U3I3+U4I4+……再根据U2= U1 U3= U1 U4= U4……可得出:
n1I1=n2I2+ n3I3+ n4I4+……
6.注意事项
(1)当变压器原副线圈匝数比( )确定以后,其输出电压U2是由输入电压U1决定的(即U2= U1)但若副线圈上没有负载 , 副线圈电流为零输出功率为零 , 则输入 功率为零,原线圈电流也为零,只有副线圈接入一定负载,有了一定的电流,即有了一定的输出功率,原线圈上才有了相应的电流(I1= I2),同时有了相等的输入功率,(P入=P出)所以说:变压器上的电压是由原线圈决定的,而电流和功率是由副线圈上的负载来决定的。

变压器是利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器,是电能传递或作为信号传输的重要元件。变压器是一种静止电机,根据电磁感应的原理,能够将一种电压的电能转换为另一种电压的电能,以满足不同负荷的需要。变压器的主要部件是一个铁心和套在铁心上的两个绕组。其中,与电源相连的线圈,接收交流电能,称为一次绕组;与负载相连的线圈,送出交流电能,称为二次绕组。
通常情况下,变压器可分为电力变压器、电炉变压器、电焊变压器、整流变压器、仪用变压器和电子变压器等。在电力系统中,变压器的地位十分重要,不仅所需数量多,而且性能十分稳定,运行安全可靠。变压器除了应用在电力、冶金、化工等系统中,还应用在需要特种电源的其他行业中。例如:试验用的试验变压器,交通用的牵引变压器,以及补偿用的电抗器,保护用的消弧线圈,测量用的互感器等。

电源变压器的特性参数
1、工作频率
变压器铁芯损耗与频率关系很大,故应根据使用频率来设计和使用,这种频率称工作频率。
2、额定功率
在规定的频率和电压下,变压器能长期工作,而不超过规定温升的输出功率。
3、额定电压
指在变压器的线圈上所允许施加的电压,工作时不得大于规定值。
4、电压比
指变压器初级电压和次级电压的比值,有空载电压比和负载电压比的区别。
5、空载电流
变压器次级开路时,初级仍有一定的电流,这部分电流称为空载电流。空载电流由磁化电流(产生磁通)和铁损电流(由铁芯损耗引起)组成。对于50Hz电源变压器而言,空载电流基本上等于磁化电流。
6、空载损耗
指变压器次级开路时,在初级测得功率损耗。主要损耗是铁芯损耗,其次是空载电流在初级线圈铜阻上产生的损耗(铜损),这部分损耗很小。
7、效率
指次级功率P2与初级功率P1比值的百分比。通常变压器的额定功率愈大,效率就愈高。
8、绝缘电阻
表示变压器各线圈之间、各线圈与铁芯之间的绝缘性能。绝缘电阻的高低与所使用的绝缘材料的性能、温度高低和潮湿程度有关。

音频变压器和高频变压器特性参数
1、频率响应
指变压器次级输出电压随工作频率变化的特性。
2、通频带
如果变压器在中间频率的输出电压为U0,当输出电压(输入电压保持不变)下降到0.707U0时的频率范围,称为变压器的通频带B。
3、初、次级阻抗比
变压器初、次级接入适当的阻抗Ro和Ri,使变压器初、次级阻抗匹配,则Ro和Ri的比值称为初、次级阻抗比。在阻抗匹配的情况下,变压器工作在最佳状态,传输效率最高。

什么是变压器;

变压器即一种利用法拉第电磁感应,利用初级线圈,次级线圈,和磁芯用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位的电力设备。

变压器

变压器的工作原理:利用电磁感应原理制成的静止用电器。将电能转换成高电压低电流形式,然后再转换回去,因此大大减小了电能在输送过程中的损失,使得电能的经济输送距离达到更远。

变压器原理图

主要用途::电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。



变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头.例: T01, T201等。
变压器是用来改变交流电压的置,由铁芯和线圈线成。它不仅能改变交流电的电压,同时还能改变阻抗,在不超设计功率时,还可改变电流。
在不同的环境下,变压器的用途也不同,如:
1、远距输入电线路,为减小线路损耗,从发电厂出来的电,要先升压到几万伏(如11KV),到达目的地时,再降压(如220V)。
2、在电子放大线路中,为达到两线放大间转输能量消耗最少,要进行阻抗匹配,用变压器联接,可起到改变阻抗的作用。
3、电焊时,在焊条与焊件间所需电流很大(几十~几百安),而电压很小(几伏)。电焊机就是一个变压器,它把高电压(如220V)变成低压。而在不改变功率的条件下,在输出端产生很大的电流。
4、有时,在一个环境中需要不同的电压,变压器又可制成多绕组的或中间抽头式的。进而产生多种电压。
5、在交流稳压器中,采用即时改变输出线圈的圈数,来达到调速输出电压的目的。

变压器是一种静止电机,它应用电磁感应原理,可将一种电压的电能转换为另一种电压的电能(一般是交流电)。从电力的生产、输送、分配到各用电户,采用着各式各样的变压器。首先,从电力系统来讲,变压器就是一种主要设备。我们知道,要将大功率的电能输送到很远的地方去,再用较低的电压即相应的大电流来传输是不可能的。这是由于:一方面,大电流将在输电线上引起大的功率损耗;另一方面,大电流还将在输电线上引起较大的电压降落,致使电能根本送不出去。为此,需要变压器来将发电机的端电压升高,相应的电流便可减小。
对于大型动力用户只需3000V、6000V或10000V电压,而小动力与照明用户只采用220V或380V电压,这就必须用降压变压器把输电线上的高压电降低到配电系统的电压,由配电系统满足各用户用电的电压。
由上所知,在电力系统中变压器的地位是非常重要的,不仅需要变压器的数量多,而且要求性能好、技术指标先进,还要保证运行时安全可靠。
变压器除了在电力系统中应用外,还应用于一些工业部门中。例如,在电炉、整流设备、电焊设备、矿山设备、交通运输的电车等设备中,都要采用专门的变压器。此外,在实验设备、无线电装置、无线电设备、测量设备和控制设备(一般有叫控制变压器,容量都很小)中,也应用着各种各样的变压器。

  • 变压器是根据什么原理工作的?变压器有哪些部件?各部的作用是什么?
    答:二、结构:主要构件是初级线圈、次级线圈和铁芯(铁芯有时也叫磁芯,线圈有时也叫绕组)。变压器有两个或两个以上的线圈,两个线圈(初级和次级)之间没有电的联系,通过磁耦合,线圈由绝缘铜线或铝线绕成。铁心的作用是加强两个线圈间的磁耦合。为了减少铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而...
  • 变压器是干什么用的,12伏变压器是什么意思。一般都有几伏的,说的直白 ...
    答:变压器就是改变电压的,12v变在器就是输出为12v。常用的有6v12v24v36v72v110v等
  • 变压器在电力系统中的主要作用是什么?
    答:在发电、输送电、配电和用电的四个环节中,电力变压器出现在前三个环节中。第一,在发电环节,电力变压器把发电厂所发的电能输送到电网中去,并且提高发电厂输出的电压,使之满足输送电电网额定高电压的要求。这里所用的变压器属于升压变压器。第二,用于不同电压等级的电网之间的电压变换。第三,用于输送...
  • 变压器的工作原理是什么有哪些作用
    答:变压器的工作原理是用电磁感应原理工作的。作用:保证用电安全和满足各种不同电器队电玉的需求;利用变压器将高压降低;变压器还具有变换电流的作用;变压器还具有变换阻抗的作用。 扩展资料 变压器的工作原理是用电磁感应原理工作的`。作用:保证用电安全和满足各种不同电器队电玉的需求;利用变压器将...
  • 变压器原理是什么?谁能简单解释一下吗?
    答:变压器又有其做试验而用的,称之为试验变压器,分别可以分为充气式,油浸式,干式等试验变压器,是发电厂、供电局及科研单位等广大用户的用来做交流耐压试验的基本试验设备,通过了国家质量监督局的标准,用于对各种电气产品、电器元件、绝缘材料等进行规定电压下的绝缘强度试验。 运行维护 1、防止变压器过载运行:如果长期过载...
  • 用电时使用的变压器的作用是什么?
    答:运电过程中要减少损耗。变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频...
  • 变压器是干什么的?
    答:变压器的作用如下:1、保证用电安全和满足各种不同电器队电玉的需求。2、利用变压器将高压降低。3、变压器还具有变换电流的作用。4、变压器还具有变换阻抗的作用。直流变压器的作用主要有以下几个方面:第一:提升直流电压,好让电压更适合电子设备所需要的电压大小。第二:当目前的电压太小,从而无法满足...
  • 变压器的分类和用途?
    答:变压器按用途可以分为电力变压器和特种变压器两大类。电力变压器是电力系统中输配电力的主要设备可分为升压变压器,降压变压器,配电变压器和常用变压器等。特种变压器是指根据不同系统的部门的要求,用于各种特殊用途的变压器,如电炉变压器,整流变压器,电焊变压器。仪用互感器等。
  • 变压器的工作原理是什么有哪些作用
    答:变压器的工作原理是用电磁感应原理工作的。变压器有两组线圈。初级线圈和次级线圈。次级线圈在初级线圈外边。当初级线圈通上交流电时,变压器铁芯产生交变磁场,次级线圈就产生感应电动势。变压器的线圈的匝数比等于电压比。作用 1、保证用电安全和满足各种不同电器队电玉的需求。2、利用变压器将高压降低。
  • 变压器都是用在哪些地方?
    答:变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心 变压器的用途 现代化的工业企业广泛的采用电力作为能源,而发电...