变频电动机的调速原理

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-06-28
请问异步电动机变频调速系统的原理是什么?

采用变频器对三相异步电动机实行变频变压调速,在额定频率以下可得恒转矩特性;在额定频率以上可得恒功率特性。但是,无论何种形式的变频器,其输出电压和电流中,均含有高次谐波,与通常电网供电的正弦波有着较大的差别。而且,由于调速过程中供电频率需在一个较大的范围内变化,因而电动机的运行特性会有相应的改变。

1 变频调速异步电动机转矩转速特性�

  根据电机原理和三相异步电动机的T型等值电路,异步电动机的转矩M与转差率S的关系为:



式中 m1——相数;
  �P1——极对数;
  �Em——感应电势,Em=4.44f1Kdp1W1∮;
  �f1——电源频率;
  �r2′、L2′——T型等值电路中算到定子边的转子电阻和电感;
  �f1′——T型等值电路中的频率;
  �Kdp1——定子绕组的绕组系数;
  �W1——定子绕组的每极匝数;
 ��∮——磁通量。
  最大转矩Mm与产生最大转矩时的转差率(即临时转差)Sm分别为:



由此可见,变频调速异步电动机的转矩特性,应是Em/f1与转子电流频率Sf1的函数,只要保持Em/f1不变,即保持气隙磁通不变,转矩就成为转差频率(即转子电流频率)Sm的函数。而最大转矩则直接与Em/f1相关。如能保持Em/f1为常数,那么最大转矩就可保持恒定。而且,由于临界转差率Sm是电源频率的函数,因此,当电源频率改变时,Sm也随之改变。这样,就为异步电动机的起动创造了良好的条件。如果能保持Em/f1不变,并选择适当的起动频率,使Sm接近于1,电机就有可能在较低的起动频率和相应电压下以最大转速起动,不会像恒频恒压供电时那样由于全压起动,而给电网带来数倍于电机额定电流的启动电流的冲击。
在变频器中,若用U1/f1代替Em/f1进行恒转矩控制,当电压U1随f1成比例地减小时,由于定子阻抗压降的存在,将使Em/f1磁通减小,转矩降低。为了补偿这一变化,一般变频器都采用了在低速范围内适当提高U1/f1的控制方式。但是,必须注意,U1/f1值太大会造成轻载时的过激励,使电路饱和,励磁电流增加。�
  以上用恒定磁通实现恒转矩调速的分析,仅限于额定功率以下的情况。当速度调节达到额定转速时,电压已经达到额定值,不能再随着频率的升高而增加。因此,在变频调速系统中,当频率从额定值往上调时,电压需保持稳定。故磁通及转矩将随着频率的升高而减小,即对电机进行“弱磁控制”,传动系统将处于恒功率状态下运行。

2 变频调速对电机的影响�

  目前,普通异步电动机都是按恒压设计的,它不完全适应变频调速的要求,具体反映在以下方面。
2.1 电动机的效率和升温问题�
  不论何种型式的变频器,在工作中均会产生不同程度的谐波电压和谐波电流,使异步电动机在非正弦电流下运动。以目前比较普遍使用的正弦波PWM变频器为例,其低次谐波基本上为零,剩下的是比载波频率(晶体管开关频率)高1倍左右的高次谐波分量2μ+1(μ为调制比)。
高次谐波会引起定子铜耗、转子铝耗、铁耗及附加损耗的增加,其中最为显著的是转子损耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因而高次谐波电压以较大的转差切割转子导条后便产生很大的转子损耗。�
除此以外,还必须考虑到因集肤效应所产生的附加铜耗。若是异步电动机为改善起动性能而采用了深槽、刀形槽或瓶形槽等转子槽形时,转子铝耗的增加将更大。这些损耗都会使电机额外发热,效率降低,输出下降,如将普通异步电动机运行于变频器输出的非正弦电源条件下,其升温一般约增加10%~12%。
2.2 电动机绝缘结构承受冲击电压的能力�
  目前中小容量变频器绝大多数采用PWM控制方式。其载波频率约为几kHz到十几kHz,这就使电动机线圈需要承受很高的电压上升率,即dU/dt值很高,相当于电动机线圈上反复施加电压陡度极大的冲击电压,使电机匝间绝缘承受考验。
 �另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电机的对地绝缘形成威胁,在高电压的反复冲击下加速老化。
2.3 谐波电磁噪声与震动�
  当采用变频器供电时,普通异步电动机上由电磁机械和通风等原因所引起的震动和噪音将变得更加复杂。变频器电源中含有的各次谐波与电机电磁部分的固有谐波相互干扰,形成各种电磁激震力,当电磁力波的频率和结构件的固有震动频率一致或接近时,将产生共振现象,加大噪声。由于电机工作的频率范围宽,转速变化的范围大,各种电磁力波的频率很难避开电机各种结构件的固有频率。普通异步电动机用变频器供电时的噪声,比用电网供电时一般约增加1015dB左右。
2.4 电动机对频繁起制动的适应能力�
  采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式起动,并可以利用变频器所提供的各种制动方式进行快速制动,为实现频繁起制动创造了良好的条件。例如:应用在钢厂辊道上及转炉倾动上的变频电动机,起制动或正反转的次数可达到数百上千次,因而,电动机的结构系统和电磁系统处于循环交变的作用下,给电动机的机械结构和绝缘结构带来疲劳和加速老化问题。
2.5 低速时的冷却问题
  在电源频率较大时,因普通异步电动机的阻抗不尽理想,使电源中高次谐波所引起的损耗较大;其次,自带风扇的普通异步电动机在转速降低时,冷却风量将与转速的3次方成比例减少,这必将使电动机的低速温升急剧增加,而难以实现恒转矩输出。

3 变频调速三相异步电动机的改进�

  通过上面的分析可以看出,普通异步电动机不适宜运行在变频调速系统下。为此,需研究和设计新的供变频调速专用的异步电动机系列。
3.1 电磁特性的改进�
  对于恒频恒电压供电的普通异步电动机,在电磁设计中,主要考虑的性能参数是过载能力、起动特性、效率和功率因数。在变频调速的异步电动机中,由于临界转差与电源频率成反比,因此只要选择转子参数r′2、L′2,就可降低频率,在临界转差接近于1时直接起动,从而提高电动机对非正弦电源波形的适应能力。为此,可以考虑:
(1)降低定子电阻,提高转子电阻。降低定子电阻既可以减少基波铜耗,以弥补高次谐波引起的铜耗增加,又可减小低速时的定子电阻压降,使最大转矩有所上升。此外,变频电机采用较大的转子电阻不但可以减少由基波和高次谐波所产生的转子铝耗,还可以依靠L2/r2的加大,在一定程度上抑制低速时的转矩脉动。
(2)目前一般市售通用变频器,以电压型居多,为抑制电流中的高次谐波,需要适当增加电机的电感量。但由于电机转子槽有漏抗较大的槽形,集肤效应也大,故高次谐波铜耗也增大。而且,从式(2)可知,具有较大转子电感的电动机,在恒功率调速区域,最大转矩将随电源频率的增加而降低,有可能使电机难以维持恒功率运行。因此,电机漏电感的大小要兼顾到整个调速范围内阻抗匹配的合理性。
(3)变频调速异步电动机的主磁路设计一般均不十分饱和。这一方面是考虑到电源中的高次谐波会加深磁路饱和;另一方面也考虑到低频时为了提高输出转矩而适当提高变频器的输出电压。
3.2 结构改进
由于电源的非正弦波特性对变频电动机的绝缘结构、震动、噪音、冷却方式等多有影响,因此,在结构设计中必须考虑:
(1)在把电动机耐热等级提高的基础上,还必须对地绝缘强度和导线匝间绝缘的耐冲击电压能力有充分的考虑。
(2)在震动和噪声的问题上,除了选择合适的定、转子槽配合之外,对定转子部件的加工和装配精度也应有较高的要求,以提高气隙均匀度、转子的动平衡精度和电磁对称性,对结构件要充分考虑刚性问题。
3.3 改进效果
  在1997~1998年间,济南钢铁集团总公司(简称济钢)对部分电动机调速系统进行了改造,最初是使用“变频器+普通异步电动机”进行调速。但在电动机频繁正反转、起制动的场合,存在着如上所述的弊端,因此造成了电机绝缘降低、老化,以致于烧损。1999年之后,济钢在炼钢氧枪升降、转炉倾动、方坯连铸以及风机水泵上使用了“变频器+变频电动机”的调速新工艺。使用后不仅大大降低了电机烧损率,同时也保证了生产的顺利进行。

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。21世纪初期,使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

由三相异步电动机转速公式:n=60f(1-s)/p可知,改变供电频率f、电动机的极对数p及转差率s均可达到改变转速的目的。
从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。



  • 变频调速技术的原理是什么,有什么应用?
    答:变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一...
  • 请简述变频调速的基本原理
    答:变频调速是一种通过改变电机供电频率,从而调整电机转速的技术。它是通过变频器将电源交流电转换为可调的交流电源,实现对电机转速的调节。变频调速的基本原理包括以下几个步骤:1、输入电源:将固定频率的交流电输入变频器。2、整流:将输入的交流电转换为直流电。3、滤波:对直流电进行滤波处理,消除电压的...
  • 什么是电动机的变频调速?
    答:变频调速的原理是:在保持电动机磁通不变的条件下,通过改变电源频率f,使电动机的同步转速n1发生变化,从而实现电动机的调速。变频调速的基本特点是:调速范围大,精度高;可以在电动机的额定转速内任意调节;能连续平滑地调节转速,无级调速;调速时功率损耗小,效率较高;可以用改变电源频率f来调节电动...
  • 三相异步电动机变频调速原理和特点是什么?这种调速方法适用于什么场合...
    答:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范...
  • 变频调速的原理分析
    答:变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系,通过改变电动机工作电源频率达到改变电机转速的目的。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率...
  • 变频电机怎么调速
    答:变频电动机的调速原理:变频电动机从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。从调速时的能耗观点来看...
  • 变频电机的工作原理是什么?
    答:变频电机的工作原理基本是将工频50HZ的交流电通过整流和逆变转换为直流电,然后再通过逆变转换为所需频率的交流电。变频电机采用变频器供电,实际上是把工频电源通过整流和逆变转换为直流,再通过逆变转换为所要求频率的电源。
  • 电动机使用变频器的作用及原理是什么?
    答:具体来说,变频器可以将交流电源转换为直流电源,然后再将直流电源通过逆变器转换成与所需电机转速匹配的交流电源输出。这个过程中,变频器通过控制输入的电压和频率来调整电机的转速。变频器的原理是利用交流电源先将电压和频率转换为直流电压,再通过逆变器将直流电压转换为所需的交流电压输出。
  • 变频器是怎样实现变频调速的?
    答:通过逆变器将直流电转换为可变频率的交流电:变频器内部的逆变器电路将直流电转换为可变频率的交流电,通过PWM技术产生具有可变频率、占空比的脉冲信号,然后将脉冲信号转换为可变频率的交流电。变频器的控制电路会根据需要,调节PWM信号的频率和占空比,从而控制输出的交流电频率和电压。输出交流电控制电机转速:...
  • 什么是变频调速?
    答:变频调速简单的说就是改变频率和电压进行调速。将交流电通过整流变成直流,将直流通过晶闸管的频繁关断,使之形成的矩形波近似成交流正弦波。晶闸管的频繁关断的频率决定了输出交流电的频率。通过改变频率进而控制速度变化,这就是交直交变频。