微生物育种的诱变育种

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-04
微生物诱变育种的过程是什么?

首先选取合适的具有突变潜力的起始菌株,将其制备成均以稳定的生活状态的菌悬液,并在合适的条件下培养,至对数期,选择需要使用的物理或化学诱变剂对菌进行诱变处理。之后利用建立好的筛选条件进行有效突变体的筛选。最后保存诱变菌种。

紫外线是一种最常用有效的物理诱变因素,其诱变效应主要是由于它引起DNA结构的改变而形成突变型。紫外线诱变,一般采用15W或30W紫外线灯,照射距离为20-30cm,照射时间依菌种而异,一般为1-3min,死亡率控制在50%-80%为宜。被照射处理的细胞,必须呈均匀分散的单细胞悬浮液状态,以利于均匀接触诱变剂,并可减少不纯种的出现。同时,对于细菌细胞的生理状态则要求培养至对数期为最好

1.1物理诱变
1.1.1紫外照射
紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm,因此在260nm 的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。
紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。
1.1.2电离辐射
γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基,这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。
除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。
1.1.3离子注入
离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。
离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性,随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。
离子注入法进行微生物诱变育种,一般实验室条件难以达到,目前应用相对较少。
1.1.4 激光
激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用,都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。
激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。
1.1.5 微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。
因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。
1.1.6 航天育种
航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间,利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。
航天育种较其它育种方法特殊,是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。
1.1.7 常压室温等离子体诱变育种
常压低温等离子体(Atmospheric and Room Temperature Plasma)简称为ARTP,指能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。ARTP技术作为一种新型的物理方法,在微生物诱变育种领域有着广阔的应用前景。
等离子体中适当剂量的活性粒子作用于微生物,能够使微生物细胞壁/膜的结构及通透性改变,并引起基因损伤,菌株出现遗传物质损伤后,微生物启动SOS修复机制,其诱导产生DNA聚合酶Ⅳ和V,它们不具有3ˊ核酸外切酶校正功能,于是在DNA链的损伤部位即使出现不配对碱基,复制仍能继续前进。在此情况下允许错配可增加存活的机会。ARTP对遗传物质造成的损伤,多样性较高;又SOS诱导修复本身为容错性修复,因此,ARTP多样性的损伤将可能在修复过程中包容于DNA链中,在微生物进行复制修复时,其可能带来多样性的错配可能。
ARTP应用于微生物突变育种,成本低、操作方便,没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备;ARTP对遗传物质的损伤机制多样,具有较高的正突变率,突变性能多样,对于真菌、细菌、藻类等都有效果;ARTP对环境无污染,保证操作者的人身安全,无论用何种气体放电,其均无有害气体产生。



  • 诱变育种的流程图
    答:诱变育种的流程如下:一、选择适合的诱变剂 根据实验目的和需求,选择适合的诱变剂,如物理因素(如X射线、紫外线、激光等)或化学因素(如亚硝酸、碱基类似物、硫酸二乙酯、秋水仙素等)。二、制备诱变剂 按照诱变剂的使用说明,制备适量的诱变剂。三、处理生物材料 将生物材料(如种子、幼苗、微生物等...
  • 请你设计一种可行的微生物诱变育种方法,并较详细说明其育种过程。
    答:【答案】:苏云金杆菌诱变育种从自然界中筛选出来的一些细菌型微生物苏云金杆菌,对苏云金杆菌NU-2的原生质体进行紫外线-氯化锂复合诱变,筛选到的突变株进行发酵。
  • 诱变育种
    答:在人为的条件下,利用物理,化学等因素,诱发生物产生突变,从中选择,培育成动植物和微生物的新品种.诱变育种是指用物理、化学因素诱导植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株,进而培育成新的品种或种质的育种方法。它是继选择育种和杂交育种之后发展起来的一项现代育种技术。诱发突变...
  • 杂交育种、诱变育种的原理、方法和优缺点
    答:优缺点:可以将两个或多个优良性状集中在一起。但是不会产生新基因,且杂交后代会出现性状分离,育种过程缓慢,过程复杂。诱变育种的原理:在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育成动植物和微生物的新品种。方法:物理诱变和化学诱变。优缺点:可在较短时间内获得优良...
  • 诱变育种是如何提高微生物生产性能的?
    答:野生菌株往往难以满足工业生产的需求,这时,诱变育种便成为改造菌种,推动科技进步的重要手段(从改造野生型菌株到育种改造)。育种技术的多样性是微生物育种历史的见证,包括定向培育、杂交育种、细胞融合和基因工程等,但诱变育种以其实效性,始终占据微生物工作者心中的核心位置(育种技术多元化,诱变育种的...
  • 诱变育种的原理
    答:进而培育成新品种或种质的育种方法,物理诱变方法主要是辐射,而化学诱变方法则包括使用化学诱变剂处理。诱变育种可以提高突变率,缩短育种周期,并有效地改良作物品种的某些个别性状,它主要用于植物和微生物,是杂交育种的有力补充,同时又是其他育种方法难以替代的一种手段。
  • 诱变育种的基本步骤有哪些?关键是什么?何故
    答:诱变育种步骤主要包括诱变和筛选,其中诱变过程包括:出发菌株的选择、单孢子或单细胞悬浮液的制备、诱变剂及诱变剂量的选择、诱变处理等。诱变育种(mutation breeding)在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育成动植物和微生物的新品种。
  • 诱变育种的基本步骤有哪些 关键是什么 何故 诱变育种的主要步骤
    答:诱变育种的基本步骤有哪些?关键是什么?何故?诱变育种步骤主要包括诱变和筛选,其中诱变过程包括:出发菌株的选择、单孢子或单细胞悬浮液的制备、诱变剂及诱变剂量的选择、诱变处理等。诱变育种在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育成动植物和微生物的新品种。诱变育种...
  • 何为诱变育种?
    答:诱变育种是指利用基因突变的原理改变生物遗传物质,使生物产生新基因、新性状,从而培育生物新品种的育种方法
  • 诱变育种的基本步骤有哪些?关键是什么?何故
    答:诱变育种步骤主要包括诱变和筛选,其中诱变过程包括:出发菌株的选择、单孢子或单细胞悬浮液的制备、诱变剂及诱变剂量的选择、诱变处理等。诱变育种(mutation breeding)在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育成动植物和微生物的新品种。