低噪声放大器输入端和输出端匹配原则是什么?阻抗匹配的目的是什么?

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-08-03
什么是阻抗匹配?它的作用是什么?谢绝网上复制粘贴。不懂的请勿乱回答

阻抗匹配知识概述 [复制链接]
阻抗匹配是信号传输过程中信源内阻抗和负载阻抗之间特定的配合关系。也是一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。主要用于使传输线上所有高频的微波信号皆能传至负载点上,并不会有信号反射回来源点,进而提高了能源效益。本文我们将介绍PCB设计知识中有关阻抗匹配的一些研究。


  一 阻抗匹配的研究
  在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。
  例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配;


  1、 串联终端匹配
  串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射.
  串联终端匹配后的信号传输具有以下特点:
  A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播;
  B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。
  C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同;
  D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;?
  E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。
  相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。
  选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。
  链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。
  串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。


  2、 并联终端匹配
  并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。
  并联终端匹配后的信号传输
  具有以下特点:
  A 驱动信号近似以满幅度沿传输线传播;
  B 所有的反射都被匹配电阻吸收;
  C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。
  在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。
  双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则:
  ⑴. 两电阻的并联值与传输线的特征阻抗相等;
  ⑵. 与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大;
  ⑶. 与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。
  并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗。因而不适用于电池供电系统等对功耗要求高的系统。另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。
  当然还有:AC终端匹配; 基于二极管的电压钳位等匹配方式。


  二 将讯号的传输看成软管送水浇花
  1、 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就?
  2、 然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满脸豆花呢!
  3、 反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。
  4、 上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。


  三 传输线之终端控管技术(Termination)
  1、 由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件(如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。一旦彼此未能匹配时,则必将会有少许能量回头朝向“发送端”反弹,进而形成反射杂讯(Noise)的烦恼。
  2、 当传输线本身的特性阻抗(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28 ohm的设计数值。也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(Signal Integrity,为讯号品质之专用术语)也才最好。


  四 特性阻抗(Characteristic Impedance)
  1、 当某讯号方波,在传输线组合体的讯号线中,以高准位(High Level)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径Return Path),如此将可完成整体性的回路(Loop)系统。该“讯号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自讯号线、介质层与参考层等所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。  是故该“特性阻抗”应与讯号线之线宽(w)、线厚(t)、介质厚度(h)与介质常数(Dk)都扯
  上了关系。
  2、 阻抗匹配不良的后果  由于高频讯号的“特性阻抗”(Z0)原词甚长,故一般均简称之为“阻抗”。读者千万要小心,此与低频AC交流电(60Hz)其电线(并非传输线)中,所出现的阻抗值(Z)并不完全相同。数位系统当整条传输线的Z0都能管理妥善,而控制在某一范围内(±10﹪或 ±5﹪)者,此品质良好的传输线,将可使得杂讯减少,而误动作也可避免。  但当上述微带线中Z0的四种变数(w、t、h、 r)有任一项发生异常,例如讯号线出现缺口时,将使得原来的Z0突然上升(见上述公式中之Z0与W成反比的事实),而无法继续维持应有的稳定均匀(Continuous)时,则其讯号的能量必然会发生部分前进,而部分却反弹反射的缺失。如此将无法避免杂讯及误动作了。例如浇花的软管突然被踩住,造成软管两端都出现异常,正好可说明上述特性阻抗匹配不良的问题。
  3、 阻抗匹配不良造成杂讯  上述部分讯号能量的反弹,将造成原来良好品质的方波讯号,立即出现异常的变形(即发生高准位向上的Overshoot,与低准位向下的Undershoot,以及二者后续的Ringing)。此等高频杂讯严重时还会引发误动作,而且当时脉速度愈快时杂讯愈多也愈容易出错。

这个是网上找到,感觉讲的蛮不错,希望对你有帮助。

不只高频,信号放大都考虑阻抗匹配。目的是充分利用前级放大器或信号源的输出能力,减少放大级数,得到最大的放大效果。 其基本原理是:负载得到最大功率的条件,负载电阻等于电源内阻。 根据电路结构,阻抗匹配可以用选择输出电路形式、偶合电路形式、输入电路形式来达到。 如射极输出、集电极输出、变压器藕合、基极输入、射极输入等。还可根据不同放大元件的输出、输入阻抗特性选用,如场效应管、MOS电路等。

低噪声放大器是按噪声最佳匹配进行设计的,噪声最佳匹配点并非最大增益点。输入输出匹配时输出最大。此时噪声并非最佳,而有一些失配才能使噪声最佳。 1.在优先满足噪声小的前提下,提高电路增益,即根据输入等增益圆、等噪声圆,选取合适的ΓS ,作为输入匹配电路设计依据。 2.输出匹配电路设计以提高放大器增益为主, Γout = Z0 (ΓL = Γ2*) 3.满足稳定性条件 4.结构工艺上易实现 阻抗匹配是为了减小反射。

  • 低噪音放大器有哪些应用
    答:如无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端数字无线宽带头端设备等。在频谱资源日益紧张的背景下,基站接收路径设计要求提供最佳的信号质量和覆盖范围,其中接收器灵敏度是关键指标之一。选择合适的LNA,尤其是第一级LNA,能显著提升基站接收器的灵敏度,而低噪声指数则是设计时的核心考量。
  • 如何测低噪声光纤放大器增益曲线
    答:如果没有输入信号,输出应该为零。在放大器输入端连接一个匹配电阻(50欧接头连50欧电阻;如果70欧接头,就连70欧电阻),测试输出信号,采样后记录下来。最好是金属电阻。这个输出信号是如何组成的?主要就是运放的零漂,另一个就是运放(包括增益电阻等作为整体)噪声,第三个就是采样噪声。最大的...
  • 很感谢你给的回答。。。 我做的一个低噪声放大器的仿真。。。_百度知...
    答:使用LC并联谐振电路就行了,使LC的谐振频率为2.4G,这样就行了,如图自己计算电感与电容值,先将两个电路分开,一个为串联谐振,一个并联谐振,通过选择电容与电感值使两个电路都谐振于2.4GHz,再如图组合成T型网络,此时电路在2.4G时增益最高,通过调整Q值可调整带宽。
  • 高频头原理
    答:若馈线损耗为0.5 dB,则低噪声放大器输入端载波功率为-90.5 dBmW。第一变频器和带通滤波器的损耗约为10 dB,第一中放的增益约为30 dB。这样,若低噪声放大器给出增益(40~50) dB,则下变频器输出端可以输出(-30~-20) dBmW的信号。因此,卫星电视下变频器的作用是在保证原信号质量参数的条件下,将接收到的...
  • 射频低噪声放大器的设计与仿真 的英文文献 带翻译!或者相关的英文文献...
    答:单级射频放大器的组成如图1所示,包括射频晶体管放大电路和输入、输出匹配网络三部分。2 射频放大器的设计2.1 晶体管的选择 选择好晶体管器件对低噪声放大器的设计至关重要。 根据工作频率、增益和噪声系数等指标要求,同时考虑到设计、仿真时便于得到相应的元器件模型,最终选用Avago公司的高电子迁移率晶体管(E-PHEMT)...
  • 设计并制作一个可控放大器,放大器的增益可设置;低通滤波器、高通滤波器...
    答:在前级放大电路中,用宽带运算放大器AD603两级级联放大输入信号,输出放大一定倍数的电压,经过后级放大电路达到大于8V的有效值输出。ADUC812的单片机显示、控制和数据处理模块除可以程控调节放大器的增益外,还可以实时显示输出电压有效值。 本设计采用高级压控增益器件,进行合理的级联和阻抗匹配,加入后级负反馈互补输出级,...
  • 高频小信号放大器设计时遇到的主要问题,怎么解决?
    答:遇到的主要问题是工作稳定性与噪声。解决方案:1、为了稳定,设计和工艺方面使放大器远离自激;安装时,元器件布置要紧凑、缩短连线的长度,或进行高频滤波或加入负反馈,以压低放大器对高频信号的放大倍数或移动高频信号的相位,从而抑制自激振荡。2、为了降低噪声,应该选用低噪声管、正确选择工作点与合适...
  • PSRR是什么
    答:加法运放电路 - 通过OPA552、OPA564或THS3120等运放设计加法电路,确保带宽、电流和输出电压范围的匹配,以应对LDO的复杂需求。LC节点法 - 利用电感和电容组合,构建出适合的直流和交流电压叠加电路,适用于不同的频率范围。输出电压测量 - 高精度示波器用于低PSRR值时的测量,而放大器配合示波器或频谱分析...
  • 集成运放内部电路原理是什么
    答:在设计集成运放时,需要考虑许多因素,如增益、带宽、输入和输出阻抗、纹波抑制、输入和输出噪声等。这些因素都会影响运放的性能和应用范围。例如,增益是指运放将输入信号放大的倍数。带宽是指运放可以放大的信号频率范围。输入和输出阻抗是指运放在输入端和输出端的阻抗。纹波抑制是指运放对输出信号中的谐波...
  • 1.放大电路中的放大的本质是什么?
    答:20世纪40年代末晶体管的问世,特别是60年代集成电路的问世,加速了电子放大器以至电子系统小型化和微型化的进程。现代使用最广的是以晶体管(双极型晶体管或场效应晶体管)放大电路为基础的集成放大器。大功率放大以及高频、微波的低噪声放大,常用分立晶体管放大器。高频和微波的大功率放大主要靠特殊类型的...