基因工程

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-10
基因工程技术包括哪些基本步骤


基因工程的研究在国外开展得如火如荼,在中国进行得怎么样呢?
我国自70年代末即开始了基因工程研究工作。最几年来,我国的基因工程取得了很大的成绩,利用DNA重组技术表达了乙型肝炎表面抗原、胰岛素、干扰素、青霉素酰化酶、猪牛生长激素、促红细胞生长素等等。其中基因工程乙肝疫苗、基因工程α1型干扰素已投放市场,还有好几种基因工程医药也已进入了中试阶段,转基因植物和生物农药的基因工程工作,也将进入中试、野外试验阶段。但是基因工程技术在生产上的作用还发挥不够,经济效益还不大,还有待于提高水平以及培养人才。
我国目前还缺乏具有生产意义的基因工程元件(目的基因)。发展基因合成技术,开发基因源是发展基因工程的先决条件。我们还缺乏高效的转录启动子和宿主细胞系统,需要努力构建适用于不同宿主系统的高效表达的载体系统。基因工程下游的重要环节是表达后产物的分离、纯化,即基因工程的后处理工艺。在研究表达产物的分泌机制,建立分泌型载体受体系统等等方面,都有待于我们进一步深入研究和开发。
目前,基因工程中的许多新技术尚处于探索研究阶段,需要从理论上搞清楚。只有科学研究取得突破,才有可能开拓新的技术,新的产业才能达到较高的科学水平,从而显示出经济效益。从这个意义上讲,基础研究的水平代表了一个国家的科技实力。同时,开展基础研究也是消化吸收国外先进技术和培养人才的重要条件。因此,我国应当对生物技术的基础研究予以足够的重视。
目前,我国基因工程基础研究还比较薄弱。以我国的农业科学来说,虽然,近年来,我国十分重视基因工程在农业科学中的应用,并取得了许多重大成果,但基础研究水平还是不高,多数工作仍处于起步或模仿的阶段,与国际先进水平相比,差距还较大。
组织培养是细胞工程中容易见效的技术手段。国外对农作物遗传规律和机理研究较多,而我国这方面的研究较少。又如家畜胚胎移植技术,国外对生殖生物学的许多基础理论进行了深入研究,并不断扩大应用领域。作为胚胎移植基础环节的超数排卵技术,我国还没有过关,冷冻移植成功率低。20世纪70年代以来,国外在基因工程疫苗、自生固氮基因转移方面已经取得了较大进展,而我国这方面研究基础较差,进展缓慢。
从总体上说,我们的基因工程基础研究还相当薄弱,突出表现在:一是当前基因工程研究的选题范围、应用目标和技术路线仿国外的多,创新的少:二是将实验室成果转化为商业化产品的基础技术水平低,延缓了科研成果转化为生产能力的周期;三是有重要经济意义的微生物、植物和动物的生物学基础研究薄弱。对此,我们应有紧迫感和危机感。
近几年来,我国做了很大的努力,投入巨资兴建了现代化的生物工程开发中心,还建立了分子生物学、植物分子遗传学、遗传工程、分子酶学和天然药物及仿生药物等国家重点实验室。这些实验室对推进我国生物技术基础研究具有深远意义。
分子生物学国家重点实验室于1985年建立之后,在承担国家重点科技攻关项目,国家工业性试验项目和跟踪世界生物技术发展中起了重要作用。分子生物学是生命科学中的带头学科。它使生物学中各个学科与物理、化学密切联系起来,推动整个生物学的全面发展。它主要研究生命的物质基础,特别是研究蛋白质、酶和核酸结构与功能的关系,以阐明生命现象的各种秘密和机理。自20世纪50年代,分子生物学崛起以来,它发展迅速。如遗传物质基础的核酸双螺旋结构的发现,就是其中的一个。认识生物是改造生物的基础。分子生物学的基础研究已在工、农、医等领域的生产实践中发挥了重要作用,加强分子生物学的基础研究,对生物技术基础理论和实际应用的发展都有重大作用。
基因工程是在遗传学和分子生物学发展的基础诞生的。它研究决定遗传性状的基因重组和移植;研究基因的表达,即外源基因送到受体细胞中后,使基因信息得到表达的调节、控制的机理等。
同时,这些实验室对外开放,能够吸引国内外优秀的中青年学者,特别是留学国外的我国优秀学者归国进行研究工作,成为我国培养人才的重要基地。
当前,应考虑我国目前的实际情况,暂时不能投入较多的资金全面开发基础理论研究,要合理部署生物技术基础研究的配置工作,即结合国情,选准突破口,以近为主,远近结合。首先要重点地发展那些对生物技术发展和应用直接起作用的关键性技术。基因工程既是生物技术的基础,又是生物技术研究开发的主导,加强这方面的研究工作,对提高我国科研水平,促进今后生物技术的发展至关重要;其次,在有选择地从国外引进、吸收和消化先进技术的同时,要重视那些为开发新产品、发明新技术和创造新生物类型所必需的基础研究;其三,适当部署力量,开展分子遗传学、细胞学、微生物学和化学工程学等基础理论研究,以做好技术储备工作,为今后我国生物技术的持续和迅速的发展提供强有力的后盾。
基因工程下游过程的研究是我国的薄弱环节,应围绕攻关项目,鼓励企业创办研究机构和投资,组织好力量,动用生化工程的原理和方法,加强生产工艺和产物后处理技术等方面的研究,以便贯通基因工程的上游过程和下游过程,使科研与生产能够更好地衔接起来。

  随着科学技术的飞快发展,70年代出现了遗传工程。遗传工程就是基因工程。

  什么叫做基因工程呢?

  就是人们从细胞里取出所需要的基因,来改造生物遗传性的工作。这也就是科学工作者应用现代遗传学的技术,把人所需要的一种生物的个别基因取出来,再把它放到另一种生物的细胞里去,以此来定向改造另一种生物的遗传性,使它能够成为人所需要的新生物。
  这实际上是对基因进行了巧妙的操作。
  基因很小,肉眼看不到,用显微镜也看不到。这意味着要得到人所需要的基因,需要极巧妙的技术。
  有了人所需要的基因以后,还要把它放到另一种生物的细胞里去,这更需要巧妙的技术。
  一句话,在操作基因的过程中,需要运用一系列的精密细致的技术,所以把这项工作叫做遗传工程。
  比方说吧,胰岛素是一种内分泌素,一种激素,也是一种蛋白质。它是人体和许多动物体内不可缺少的微量蛋白质,能够进行一种很重要的工作。

  什么工作呢?

  胰岛素能够对动物体内糖分的新陈代谢进行调节,使体内血液的糖分维持在一定水平上。就拿人体来讲,每100毫升的血液里含有0.1克的葡萄糖,这是正常的生理状态。
  如果人体内血糖过多了呢?
  胰岛素就从胰脏的细胞里分泌出来,进行工作。它会使葡萄糖进入身体细胞里,转化成为肝淀粉,贮藏起来。依靠胰岛素,葡萄糖在血液里的含量就能维持相当稳定的水平。
  如果体内的血糖过多,人体又不能产生出胰岛素,或者产生的胰岛素很少,不够用,那会怎样呢?
  就会发生病症,引起身体不舒服,使人不能正常工作。同时,过多的糖分会从小便里不断地排泄出来,这就是一般所说的糖尿病。
  不消说,胰岛素是治疗糖尿病的良药。
  前面谈到,胰岛素是胰脏细胞所产生的。应该指出,并不是一切胰脏细胞都能产生胰岛素。实际上,只有胰脏的胰岛细胞才能产生胰岛素。

  为什么呢?

  科学家发现,只有在那里才有活跃的胰岛素基因,在这种基因的指导下,许多种氨基酸才会彼此连接起来,成为胰岛素。
  人如果得了糖尿病,只有用注射胰岛素的办法来补充。注射用的胰岛素是从大牲口牛、羊、猪等的胰脏里提取出来的,每100千克的原料大约只能生产三四克胰岛素,所以价钱很贵。而且牲口和人究竟不是同种类的动物,所产生的胰岛素虽然功能基本上一样,分子构造却有一些差异,因此注射之后可能会出现某些副作用。如果能够用人的胰岛素来治疗糖尿病,那是最好的了。

  能不能够得到人的胰岛素呢?

  在过去,这只是一种梦想。现在情况不同了:人们可以叫大肠杆菌产生出人的胰岛素。这个工作就要由遗传工程来完成。
  这真是个奇迹啊!让大肠杆菌产生胰岛素的遗传工程是怎样进行的呢?
  首先要得到人的胰岛素基因。人们已经知道。胰岛素是胰脏中的胰岛细胞产生的。在胰岛细胞里一定有激活的胰岛素基因DNA。既然如此,那里就有许多这个基因DNA的副本,也就是胰岛素RNA。
  原来,产生胰岛素的过程可以这样表示:
  胰岛素基因DNA
  ↓(转录)
  胰岛素的RNA
  ↓(翻译)
  胰岛素
  这样,从胰岛细胞里,可以得到许多胰岛素RNA。在一种叫做逆转录酶的作用下,就产生出相应的胰岛素基因了:
  (逆转录酶)
  胰岛素RNA—————→胰岛素DNA
  这个胰岛素DNA就是胰岛素基因。它的分子并不大,因为胰岛素就是一种分子不太大的蛋白质,只含有51个氨基酸。
  有了胰岛素基因以后,下一步要找个基因的运载体,也就是能够运送基因到一定地方去的一种物质。这好比你有了一颗珍珠,要把珍珠送到朋友家里去。你可以自己送去,也可以装在盒子里,让人家捎去。
  要把一个基因送到另一种生物的细胞里去,并不那么简单。因为基因的分子大小,不容易操作,更不容易运送。
  因此,寻找一个适宜的运载体是非常必要的。经过研究,发现细菌的质粒是一种很好的运载体。

  质粒是什么呢?

  质粒也是一个DNA分子,它大半存在于细菌的细胞里,能够跟细菌的细胞和平共处。在许多大肠杆菌的细胞里就经常含有质粒。
  质粒是有一定独立性的DNA分子,它在大肠杆菌里能够利用细菌细胞里的材料,复制自己,由一个质粒变成两个质粒。这就是DNA的自我复制。
  质粒上也含有许多基因。有些质粒的基因有抗药性,能够防止某些抗菌素(例如青霉素)的危害。所以对细菌的生存来说,是有利的。
  质粒的另一个特点是既可以离开细菌的细胞,也可以进入细菌的细胞。这样的来去自由,就使质粒有条件作为基因的运载体,把基因送进细菌的细胞里去了。
  让质粒运送基因,就得把质粒跟所要运送的基因连接在一起,使它们成为一个整体。于是,质粒到哪里,基因也就跟着到哪里了。
  怎样把质粒和基因连接在一起呢?
  质粒和基因都是DNA分子,分子的性质很相似。让一个DNA分子跟另一个DNA分子连接在一起是比较容易进行的。
  一般是用同样的内切酶来处理质粒和基因。经过处理,这两个DNA分子都露出同样的末端。于是,让这两个DNA分子彼此连接起来,成为新的结构。也就是:
  质粒DNA+外来基因DNA
  |经过内切酶处理
  质粒DNA·外来基因DNA
  这种重新组合的DNA,叫做重组DNA。重新组合DNA,就是遗传工程的核心工作。
  下一步工作就是把这个重组DNA放到某种生物的细胞里,让它在那里安家落户。
  重组DNA能够进入植物或动物的细胞里去吗?从原则上讲可以,实际上很难办到。主要因为植物或动物的细胞里一般不含有质粒,所以质粒一般很难进去定居。
  现在比较容易做到的是让重组DNA进入大肠杆菌的细胞里。这因为大肠杆菌的细胞里本来就经常有质粒存在。
  最后使大肠杆菌的细胞把重组的DNA吸收进去,遗传工程的工作就基本上完成了。
  胰岛素基因进到大肠杆菌细胞里以后,能够做些什么事呢?
  如果一切顺利的话,胰岛素基因会跟质粒一起复制自己,增加基因的数量。同时,随着大肠杆菌的细胞分裂,使大部分大肠杆菌的细胞都含有胰岛素基因。
  如果一切顺利的话,胰岛素基因就会发生作用,产生出胰岛素来了。1978年,美国科学家伊太库拉已经取得这一重大的科研成果。
  大肠杆菌产生出人的胰岛素,这不是天下奇闻吗?
  是的,确实是天下奇闻,这是自古以来的第一次。
  千千万万个大肠杆菌的细胞,都变成了制造人胰岛素的小工厂了。这是人类的胜利,科学的胜利!
  是不是一切对人有用的基因都可以运用基因工程的技术来操作呢?
  原则上可以,实际上困难重重,需要进行大量的工作,一个问题一个问题的解决。
  比方说,现在基因工程中取得成绩的都是小的或比较小的基因。分子大的基因就不容易进行操作。
  还有,进入大肠杆菌细胞的外来基因在新的条件下,能够比较正常地工作,有一些就不能正常工作。必须展开新的研究来克服这种情况。
  还有,把对人有用的基因移入植物和动物的细胞里去的研究,目前正在进行,还没有得到成功。如果成功了,就可以把固氮细菌的固氮基因,移入水稻、小麦或其他谷类作物的细胞里去。
  固氮基因能够产生固氮酶,利用固氮酶,就可以把空气中的大量的氮气转化成含氮的肥料。如果运用基因工程,使谷类作物自己能够固氮,我们就不必设立那么多的化肥厂了,不但节省了资金,还可以使环境避免污染。
  虽说万事起头难,基因工程一开始就取得了令人注目的一些成就,生产出对人有用的许多化学制品和药品。
  胰岛素是一个。
  生长素是另一个。生长素也是一种激素,在它的作用下,动物和人就能够正常生长。
  侏儒是人体内生长素分泌不足的结果。而巨人是人体内生长素分泌过多的缘故。
  干扰素又是另一个。它是对付病毒和某些癌症的有效药物。
  1983年,科学家成功地进行了一项遗传工程:把大家鼠的生长素基因和质粒结合,注射给小家鼠的受精卵细胞核里。结果小家鼠长成巨型小家鼠。由此说明许多经济动物的遗传性可以加快改造,更好地为人类服务。
  一句话,遗传工程这个崭新的遗传学技术,有强大的生命力。随着科学研究的进一步发展,它能够做出现在还只能设想的许多大事业来。

基因工程是一系列分子生物技术(比如重组DNA)引起的,植物、动物、微生物、细胞和其他生物单元的基因物质被某种方法或方式进行了改变,而且这种改变不属于自然繁殖或自然重组。

基因工程是什么



  • 生物技术五大工程:基因工程、细胞工程、蛋白质工程、酶工程、发酵工程...
    答:这五大工程互相联系、相互渗透, 构成了一个不可分割的整体。作为生物技术核心内容的基因工程 和细胞工程为发酵工程的菌种选育、酶工程与蛋白质工程中酶蛋 白的改造等领域提供技术支持;而发酵工程则为基因工程、细胞工程、酶工程和蛋白工程等领域的高科技成果实现产业化关键。这五大工程基本原理和方法建立...
  • 基因工程名词解释是什么?
    答:基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图。在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品的遗传技术。基因工程技术为基因的结构和...
  • 什么是基因工程?基因工程操作的基本技术路线是什么
    答:基因工程,是利用dna重组技术,将目的基因与载体dna在体外进行重组,然后把这种重组dna分子引入受体细胞,并使之增殖和表达的技术。如果将一种生物的dna中的某个遗传密码片断连接到另外一种生物的dna链上去,将dna重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型。基因工程一般...
  • 基因工程技术有哪些
    答:问题一:基因工程包括哪些 是,基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力...
  • 生物技术四大工程
    答:生物技术的四大工程包括基因工程、细胞工程、发酵工程和酶工程。1、基因工程:基因工程是一种通过改变生物体的基因来改变其性状的技术。它利用重组DNA技术,在体外将目的基因插入载体DNA分子中,然后导入宿主细胞,从而实现对生物性状的改造。基因工程在农业、医药、工业等领域有广泛的应用。2、细胞工程:细胞...
  • 什么是基因工程基因工程的操作步骤
    答:基因工程的优点 基因工程最突出的优点是打破了常规育种难以突破的物种之问的界限,可以使原核生物与真核生物之间、动物与植物之间,甚至人与其他生物之间的遗传信息进行重组和转移。人的基因可以转移到大肠杆菌中表达,细菌的基因可以转移到植物中表达。 基因工程的操作步骤 工具 (1)酶:限制性核酸内切酶、DNA连接酶、...
  • 怎么区分基因工程与细胞工程
    答:一基因工程 基因工程是20世纪70年代以后兴起的一门新技术,其主要原理是应用人工方法把生物的遗传物质,通常是脱氧核糖核酸(DNA)分离出来,在体外进行切割、拼接和重组。然后将重组了的DNA导入某种宿主细胞或个体,从而改变他们的遗传品性。有时还能使新的遗传信息在新的宿主细胞或个体中大量表达,抑或基因...
  • 什么是基因工程?
    答:基因工程,又称基因拼接技术或DNA重组技术,是一种在分子水平上对遗传物质进行操作和改造的先进生物技术。它利用生物化学、分子生物学、遗传学和信息学等原理和方法,按照人们的需求,对生物的遗传基因进行改造和重新组合,以改变生物的性状、创造新的生物类型和生物产品。基因工程的基本过程通常包括以下几个...
  • 基因工程与转基因
    答:问题一:基因工程和转基因技术有什么区别和联系? 将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,埂起生物体的性状的可遗传的修饰,这一技术称之为转基因技术。转基因技术是基因工程的一种手段和方法 转基因技术∈基因工程 狭义的基因工程仅指用体外重组DNA技术去获得新的重组基因...
  • 什么是植物基因工程?
    答:植物基因工程是指利用培养的植物组织、细胞或原生质体作为受体,通过某种途径或技术将来之于微生物、动物或植物的基因或人工合成的基因作为外源基因导入植物细胞并使之稳定地表达,实现植物遗传改良的生物工程。利用转基因技术,将某些具有特殊性状如抗病、抗虫、抗除草剂、抗涝、抗旱和抗盐碱的基因导入作物中...