怎么知道是植物缺素症状

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-08-14
说说植物缺素症状各会有什么表现!详细哦!

不同植物表现出不同的缺素症状:即使是相近的种类间对元素的缺乏反应也表现出差异,详见检索表:


A、响到全株或局部的老叶,特别表现在下部老叶:


1.影响到全株老叶明显变黄和死亡:


a. 叶浅绿色,植株矮也茎细,有的裂开,叶小,下部时浅绿色,黄色后转为褐色而枯死………………………………………………………………缺氮


b.叶暗绿,生长慢,有时下时叶脉(尤其是叶柄)黄色且带紫色,落叶早……………………………………………………………………·缺磷


2. 经常局部影响较老的和下部的叶:


a .下部叶靠近顶部和边缘有斑点,通常坏死。边缘开始变黄并继续向中间发展,以后老时凋落………………………………………………………缺钾


b.下部叶黄化,在后期坏死。叶脉间黄化,阶)脉为正常绿色,叶边缘向上或向下有揉皱,叶脉间突然坏死……………………………………………缺镁


B. 局部影响新时:


1.顶芽生长良好:


a.时黄化,时脉保持绿色:


①通常无坏斑点,在极端情况下,边缘和顶部有坏死,有时向内发展,仅较大的叶脉保持绿色……………………………………………………………缺铁

②通常有坏死斑点,并分散整个叶面,呈棋格或最终呈网状,只有最小叶脉保持绿色,花小色彩差………………………………………………………缺锰


b.叶呈淡绿色,时脉色比叶中间淡,坏死较少,老叶很少或不死亡………………………………………………………………………缺硫


2.顶芽通常死亡

a.也的尖端和边缘坏死,顶端有弯曲,出现上述症状之前根已死亡………………………………………………………………缺钙

b.嫩叶基部碎裂,茎及时柄脆弱,分生组织死亡,有增加分枝的趋势…………………………………………………………………缺硼

花卉生长需要多种营养元素,如果缺少某种营养元素,植株会表现出一定的生长异常现象,称为缺素症。花卉患病后,影响正常的光合作用,严重的会导致生长衰弱,落叶。衰弱的植株也容易被各种病虫害侵入。正确把握花卉缺素症的症状,有利于进行合理的施肥管理。(1)缺氮。氮是合成蛋白质和叶绿素的重要组成部分。缺氮会使植株矮小,叶片瘦而薄且易脱落,叶色变成黄色或淡绿色,其颜色变化起于老叶,然后逐渐扩展到新叶,同时花芽发育也会受到影响,致使花小而色浅。(2)缺磷。磷是植物细胞形成原生质和细胞核的重要物质。缺磷会使植物生长受到抑制,植株矮小,茎短而细,叶片小于正常叶,叶色变成深绿色且灰暗无光泽,叶柄紫色或红色,最后叶片枯死脱落,但脱落的叶不发黄,这是与缺氮症的区别。(3)缺钾。钾对植物体内碳水化合物的合成、转移和积累有促进作用,它能使植株生长得更健壮。植物缺钾时体内代谢易失调,光合作用显著减弱,导致叶色失绿,老叶的尖端和边缘变黄直至枯死,严重时会使大部分叶片枯黄。(4)缺镁。镁是构成叶绿素的重要物质,植物缺镁时同样会引起黄化病,缺镁时植物常常是从下部叶片开始褪绿黄化,然后逐步向上部叶片蔓延,开始时主脉间的叶肉明显失绿,但叶脉仍保持正常绿色,随着病情的发展,叶片逐渐枯死脱落。(5)缺铁。铁是植物细胞合成叶绿素所必需的元素,它对植物的正常发育必不可少。当植物吸收不到足够的铁时,往往引起植株的黄化病。植株枝条上部的新叶和嫩叶最先受害,然后发展至基部的老叶,轻微缺铁时叶肉变成淡绿色,叶脉仍保持绿色,叶片一般不枯萎。缺铁严重时叶片全部变成黄白色,并逐渐枯萎脱落,根系也变成白色。我国北方的土壤往往偏碱,这使得土壤中的铁元素很难被植物所吸收和利用,因而往往导致植株发生黄化病。

植物缺素症状识别

(一)氮
根系吸收的氮主要是无机态氮,即铵态氮和硝态氮,也可吸收一部分有机态氮,如尿素。
氮是蛋白质、核酸、磷脂的主要成分,而这三者又是原生质、细胞核和生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶和辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还是某些植物激素如生长素和细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。此外,氮是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂和生长。当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要是供给氮素营养。
缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这是缺氮症状的显著特点。
氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏和被病虫害侵害。
(二)磷
磷主要以H2PO-4或HPO2-4的形式被植物吸收。吸收这两种形式的多少取决于土壤pH。pH<7时, H2PO-44居多;pH>7时, H2PO-4较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。
磷是核酸、核蛋白和磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷是AMP、ADP和ATP的成分;磷还参与碳水化合物的代谢和运输,如在光合作用和呼吸作用过程中,糖的合成、转化、降解大多是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+和FAD的参与,而磷酸吡哆醛和磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA和NAD+的参与。
由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化和运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯和禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,是仅次于氮的第二个重要元素。
缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这是缺磷的病症。
磷在体内易移动,也能重复利用,缺磷时老叶中的磷能大部分转移到正在生长的幼嫩组织中去。因此,缺磷的症状首先在下部老叶出现,并逐渐向上发展。
磷肥过多时,叶上又会出现小焦斑,系磷酸钙沉淀所致;磷过多还会阻碍植物对硅的吸收,易招致水稻感病。水溶性磷酸盐还可与土壤中的锌结合,减少锌的有效性,故磷过多易引起缺锌病。
(三)钾
钾在土壤中以KCl、K2SO4等盐类形式存在,在水中解离成K+而被根系吸收。在植物体内钾呈离子状态。钾主要集中在生命活动最旺盛的部位,如生长点,形成层,幼叶等。
钾在细胞内可作为60多种酶的活化剂,如丙酮酸激酶、果糖激酶、苹果酸脱氢酶、琥珀酸脱 氢酶、淀粉合成酶、琥珀酰CoA合成酶、谷胱甘肽合成酶等。因此钾在碳水化合物代谢、呼吸作用及蛋白质代谢中起重要作用。 钾能促进蛋白质的合成,钾充足时,形成的蛋白质较多,从而使可溶性氮减少。钾与蛋白质在植物体中的分布是一致的,例如在生长点、形成层等蛋白质丰富的部位,钾离子含量也较高。富含蛋白质的豆科植物的籽粒中钾的含量比禾本科植物高。
钾与糖类的合成有关。大麦和豌豆幼苗缺钾时,淀粉和蔗糖合成缓慢,从而导致单糖大量积累;而钾肥充足时,蔗糖、淀粉、纤维素和木质素含量较高,葡萄糖积累则较少。钾也能促进糖类运输到贮藏器官中,所以在富含糖类的贮藏器官(如马铃薯块茎、甜菜根和淀粉种子)中钾含量较多。此外,韧皮部汁液中含有较高浓度的K+,约占韧皮部阳离子总量的80%。从而推测K+对韧皮部运输也有作用。
K+是构成细胞渗透势的重要成分。在根内K+从薄壁细胞转运至导管,从而降低了导管中的水势,使水分能从根系表面转运到木质部中去;K+对气孔开放有直接作用见表2-5,离子态的钾,有使原生质胶体膨胀的作用,故施钾肥能提高作物的抗旱性。
缺钾时,植株茎杆柔弱,易倒伏,抗旱、抗寒性降低,叶片失水,蛋白质、叶绿素破坏,叶色变黄而逐渐坏死。缺钾有时也会出现叶缘焦枯,生长缓慢的现象,由于叶中部生长仍较快,所以整个叶子会形成杯状弯曲,或发生皱缩。钾也是易移动可被重复利用的元素,故缺素病症首先出现在下部老叶。
N、P、K是植物需要量很大,且土壤易缺乏的元素,故称它们为“肥料三要素”。农业上的施肥主要为了满足植物对三要素的需要。
(四)钙
植物从土壤中吸收CaCl2、CaSO4等盐类中的钙离子。钙离子进入植物体后一部分仍以离子状态存在,一部分形成难溶的盐(如草酸钙),还有一部分与有机物(如植酸、果胶酸、蛋白质)相结合。钙在植物体内主要分布在老叶或其它老组织中。
钙是植物细胞壁胞间层中果胶酸钙的成分,因此,缺钙时,细胞分裂不能进行或不能完成,而形成多核细胞。钙离子能作为磷脂中的磷酸与蛋白质的羧基间联结的桥梁,具有稳定膜结构的作用。
钙对植物抗病有一定作用。据报道,至少有40多种水果和蔬菜的生理病害是因低钙引起的。苹果果实的疮痂病会使果皮受到伤害,但如果供钙充足,则易形成愈伤组织。钙可与植物体内的草酸形成草酸钙结晶,消除过量草酸对植物(特别是一些含酸量高的肉质植物)的毒害。钙也是一些酶的活化剂,如由ATP水解酶、磷脂水解酶等酶催化的反应都需要钙离子的参与。
植物细胞质中存在多种与Ca2+有特殊结合能力的钙结合蛋白(calcium binding proteins,CBP),其中在细胞中分布最多的是钙调素(Calmodulin,CaM)。Ca2+与CaM结合形成Ca2+—CaM复合体,它在植物体内具有信使功能,能把胞外信息转变为胞内信息,用以启动、调整或制止胞内某些生理生化过程。
缺钙初期顶芽、幼叶呈淡绿色,继而叶尖出现典型的钩状,随后坏死。钙是难移动,不易被重复利用的元素,故缺素症状首先表现在上部幼茎幼叶上,如大白菜缺钙时心叶呈褐色。
(五)镁
镁以离子状态进入植物体,它在体内一部分形成有机化合物,一部分仍以离子状态存在。
镁是叶绿素的成分,又是RuBP羧化酶、5-磷酸核酮糖激酶等酶的活化剂,对光合作用有重要作用;镁又是葡萄糖激酶、果糖激酶、丙酮酸激酶、乙酰CoA合成酶、异柠檬酸脱氢酶、α酮戊二酸脱氢酶、苹果酸合成酶、谷氨酰半胱氨酸合成酶、琥珀酰辅酶A合成酶等酶的活化剂,因而镁与碳水化合物的转化和降解以及氮代谢有关。镁还是核糖核酸聚合酶的活化剂,DNA和RNA的合成以及蛋白质合成中氨基酸的活化过程都需镁的参加。具有合成蛋白质能力的核糖体是由许多亚单位组成的,而镁能使这些亚单位结合形成稳定的结构。如果镁的浓度过低或用EDTA(乙二胺四乙酸)除去镁,则核糖体解体,破裂为许多亚单位,蛋白质的合成能力丧失。因此 镁在核酸和蛋白质代谢中也起着重要作用。
缺镁最明显的病症是叶片贫绿,其特点是首先从下部叶片开始,往往是叶肉变黄而叶脉仍保持绿色,这是与缺氮病症的主要区别。严重缺镁时可引起叶片的早衰与脱落。
(六)硫
硫主要以SO2-4形式被植物吸收。SO2-4进入植物体后,一部分仍保持不变,而大部分则被还原成S,进而同化为含硫氨基酸,如胱氨酸,半胱氨酸和蛋氨酸。这些氨基酸是蛋白质的组成成分,所以硫也是原生质的构成元素。辅酶A和硫胺素、生物素等维生素也含有硫,且辅酶A中的硫氢基(-SH)具有固定能量的作用。硫还是硫氧还蛋白、铁硫蛋白与固氮酶的组分,因而硫在光合、固氮等反应中起重要作用。另外,蛋白质中含硫氨基酸间的-SH基与-S-S-可互相转变,这不仅可调节植物体内的氧化还原反应,而且还具有稳定蛋白质空间结构的作用。由此可见,硫的生理作用是很广泛的。
硫不易移动,缺乏时一般在幼叶表现缺绿症状,且新叶均衡失绿,呈黄白色并易脱落。缺硫情况在农业上很少遇到,因为土壤中有足够的硫满足植物需要。
(七)铁
铁主要以Fe2+的螯合物被吸收。铁进入植物体内就处于被固定状态而不易移动。铁是许多酶的辅基,如细胞色素、细胞色素氧化酶、过氧化物酶和过氧化氢酶等。在这些酶中铁可以发生Fe3++e-==Fe2+的变化,它在呼吸电子传递中起重要作用。细胞色素也是光合电子传递链中的成员(Cytf和Cytb559、Cytb563),光合链中的铁硫蛋白和铁氧还蛋白都是含铁蛋白,它们都参与了光合作用中的电子传递。
铁是合成叶绿素所必需的,其具体机制虽不清楚,但催化叶绿素合成的酶中有两三个酶的活性表达需要Fe2+。近年来发现,铁对叶绿体构造的影响比对叶绿素合成的影响更大,如眼藻虫(Euglena)缺铁时,在叶绿素分解的同时叶绿体也解体。另外,豆科植物根瘤菌中的血红蛋白也含铁蛋白,因而它还与固氮有关。
铁是不易重复利用的元素,因而缺铁最明显的症状是幼芽幼叶缺绿发黄,甚至变为黄白色,而下部叶片仍为绿色。土壤中含铁较多,一般情况下植物不缺铁。但在碱性土或石灰质土壤中,铁易形成不溶性的化合物而使植物缺铁。
(八)铜
在通气良好的土壤中,铜多以Cu2+的形式被吸收,而在潮湿缺氧的土壤中,则多以Cu+的形式被吸收。Cu2+以与土壤中的几种化合物形成螯合物的形式接近根系表面。
铜为多酚氧化酶、抗坏血酸氧化酶、漆酶的成分,在呼吸的氧化还原中起重要作用。铜也是质蓝素的成分,它参与光合电子传递,故对光合有重要作用。铜还有提高马铃薯抗晚疫病的能力,所以喷硫酸铜对防治该病有良好效果。植物缺铜时,叶片生长缓慢,呈现蓝绿色,幼叶缺绿,随之出现枯斑,最后死亡脱落。另外,缺铜会导致叶片栅栏组织退化,气孔下面形成空腔,使植株即使在水分供应充足时也会因蒸腾过度而发生萎蔫。
(九)硼
硼以硼酸(H3BO3)的形式被植物吸收。高等植物体内硼的含量较少,约在2~95mg•L-1范围内。植株各器官间硼的含量以花最高,花中又以柱头和子房为高。硼与花粉形成、花粉管萌发和受精有密切关系。缺硼时花药花丝萎缩,花粉母细胞不能向四分体分化。
用14C标记的蔗糖试验证明,硼能参与糖的运转与代谢。硼能提高尿苷二磷酸葡萄糖焦磷酸化酶的活性,故能促进蔗糖的合成。尿苷二磷酸葡萄糖(UDPG)不仅可参与蔗糖的生物合成,而且在合成果胶等多种糖类物质中也起重要作用。硼还能促进植物根系发育,特别对豆科植物根瘤的形成影响较大,因为硼能影响碳水化合物的运输,从而影响根对根瘤菌碳水化合物的供应。因此,缺硼可阻碍根瘤形成,降低豆科植物的固氮能力。此外,用14C—半氨基酸的标记试验发现,缺硼时氨基酸很少参入到蛋白质中去,这说明缺硼对蛋白质合成也有一定影响。
不同植物对硼的需要量不同,油菜、花椰菜、萝卜、苹果、葡萄等需硼较多,需注意充分供给;棉花、烟草、甘薯、花生、桃、梨等需量中等,要防止缺硼;水稻、大麦、小麦、玉米、大豆、柑橘等需硼较少,若发现这些作物出现缺硼症状,说明土壤缺硼已相当严重,应及时补给。
缺硼时,受精不良,籽粒减少。小麦出现的“花而不实”和棉花上出现的“蕾而不花”等现象也都是因为缺硼的缘故。
缺硼时根尖、茎尖的生长点停止生长,侧根侧芽大量发生,其后侧根侧芽的生长点又死亡,而形成簇生状。甜菜的干腐病、花椰菜的褐腐病、马铃薯的卷叶病和苹果的缩果病等都是缺硼所致。
(十)锌
锌以Zn2+形式被植物吸收。锌是合成生长素前体—色氨酸的必需元素,因锌是色氨酸合成酶的必要成分,缺锌时就不能将吲哚和丝氨酸合成色氨酸,因而不能合成生长素(吲哚乙酸),从而导致植物生长受阻,出现通常所说的“小叶病”,如苹果、桃、梨等果树缺锌时叶片小而脆,且丛生在一起,叶上还出现黄色斑点。北方果园在春季易出现此病。
锌是碳酸酐酶(carbonic anhydrase,CA)的成分,此酶催化CO2+H2O=H2CO3的反应。由于植物吸收和排除CO2通常都先溶于水,故缺锌时呼吸和光合均会受到影响。锌也是谷氨酸脱氢酶及羧肽酶的组成成分,因此它在氮代谢中也起一定作用。

植物严重缺锌常见症状。
植物缺锌较严重时会出现很多症状,主要是叶片褪绿黄白化,叶形显著变小,茎节间缩短,常发生小叶丛生,称为“小叶病”、“簇叶病”等果实小、变形,核果桨果的果肉有紫斑,生长缓慢,植株矮。
如树缺锌常出现“小叶病”;玉米苗期缺锌出现“花白苗”;水稻缺锌引起“火烧苗”;小麦缺锌节间短、抽穗扬花迟而不齐、叶片出现白绿条斑;棉花缺锌叶片脉间失绿,边缘上卷,节间缩短,生育期推迟;烟草缺锌下部叶片的叶尖及叶缘出现水渍状失绿坏死斑点,叶小而厚,节间短;马铃薯缺锌株型矮缩,顶端叶片直立,叶小,叶面上出现灰色至古铜色的不规则斑点,叶缘上卷;大豆缺锌叶片呈柠檬黄色并出现褐色斑点,逐渐扩大并连成坏死斑块;蚕豆缺锌出现“白苗”,成长后上部叶片变黄、叶形变小;叶菜类蔬菜缺锌植株矮化,叶色发黄或铜青色有斑点;番茄、青椒等果菜类缺锌小叶丛生状,新叶发生黄斑并逐渐向全叶扩展。

(十一)锰
锰主要以Mn2+形式被植物吸收。锰是光合放氧复合体的主要成员,缺锰时光合放氧受到抑制。锰为形成叶绿素和维持叶绿素正常结构的必需元素。锰也是许多酶的活化剂,如一些转移磷酸的酶和三羧酸循环中的柠檬酸脱氢酶、草酰琥珀酸脱氢酶、α-酮戊二酸脱氢酶、苹果酸脱氢酶、柠檬酸合成酶等,都需锰的活化,故锰与光合和呼吸均有关系。锰还是硝酸还原的辅助因素,缺锰时硝酸就不能还原成氨,植物也就不能合成氨基酸和蛋白质。
缺锰时植物不能形成叶绿素,叶脉间失绿褪色,但叶脉仍保持绿色,此为缺锰与缺铁的主要区别。
(十二)钼
钼以钼酸盐(MoO2-4)的形式被植物吸收,当吸收的钼酸盐较多时,可与一种特殊的蛋白质结合而被贮存。
钼是硝酸还原酶的组成成分,缺钼则硝酸不能还原,呈现出缺氮病症。豆科植物根瘤菌的固氮特别需要钼,因为氮素固定是在固氮酶的作用下进行的,而固氮酶是由铁蛋白和铁钼蛋白组成的。
缺钼时叶较小,叶脉间失绿,有坏死斑点,且叶边缘焦枯,向内卷曲。十字花科植物缺钼时叶片卷曲畸形,老叶变厚且枯焦。禾谷类作物缺钼则籽粒皱缩或不能形成籽粒。
(十三)氯
氯是在1954年才被确定的植物必需元素。氯以Cl-的形式被植物吸收。体内绝大部分的氯也以Cl-的形式存在,只有极少量的氯被结合进有机物,其中4氯吲哚乙酸是一种天然的生长素类激素。植物对氯的需要量很小,仅需几个mg•L-1,而盐生植物含氯相对较高,约70~100mg•L-1。
在光合作用中Cl-参加水的光解,叶和根细胞的分裂也需要Cl-的参与,Cl-还与K+等离子一起参与渗透势的调节,如与K+和苹果酸一起调节气孔开闭。
缺氯时,叶片萎蔫,失绿坏死,最后变为褐色;同时根系生长受阻、变粗,根尖变为棒状。

首先必须掌握“植物的各种必需元素的生理作用及其缺素症状”的理论。

其次得多实践,经过多次观察比较。就能判断。

  • 植物缺素的常见症状
    答:叶片的变色语言</叶片失绿、黄化、发红或发紫,这是最常见的信号。例如,缺氮的植物,叶子会呈现出浅绿色,基部的老叶逐渐变黄,干燥时呈现褐色,茎干细弱,分枝少,提早步入衰老。相反,缺磷的植物,虽然整体深绿,但会在阳光下显现出红色或紫色,基部叶片可能黄化,开花期推迟,果实发育受影响。形态的...
  • 植物缺素症症状表现
    答:首先,缺氮的情况在大麦分蘖盛期尤为明显。老叶片会变为淡黄绿色,叶尖干枯,随后整片叶子变为枯黄。植株表现为茎细长且直立,有时可见淡紫色,分蘖数量减少,穗子也较小。其次,缺磷时,分蘖期、拔节期或孕穗期的叶片会呈现深褐色,带有明显的紫色,尤其是在叶鞘部位。植物会显得瘦弱,分蘖少,且抗寒...
  • 关于植物缺素症状的识别
    答:植物缺钙症状:顶芽、侧芽、根尖等分生组织易腐烂死亡,叶尖弯钩状,并相互粘连,干烧心、筋腐、脐腐等。植物缺钙实例:硼(B)的生理作用:硼是影响生殖器官发育,影响作物体内细胞的伸长和分裂,对开花结实有重要作用。植物缺硼症状:顶端停止生长并逐渐死亡,根系不发达,叶色变绿,叶片肥厚,皱缩,植株...
  • 植物缺素症状一览图
    答:磷素是植物生长的另一种重要元素,它是ATP、DNA和RNA等分子结构的组成部分。如果植物没有足够的磷素,则会表现出叶片变窄和变暗的症状。植物磷素缺乏的症状包括:叶片变暗发紫,新叶迟迟不展,植株长势减弱,早衰,和凋零现象。钾素缺乏 钾素是植物生长中必不可少的一种营养素,对植物生长、代谢和冬...
  • 判断植物必需元素的标准为
    答:4、缺乏时植物会出现症状:当植物缺乏必需元素时,会出现特定的症状。例如,缺铁会导致植物叶片发黄,缺锌会导致植物生长受阻等。5、外部补充有效:对于缺乏的必需元素,通过外部补充可以有效地改善植物的生长状况。例如,通过施肥可以解决植物缺素问题。植物必需元素的标准的作用:1、植物必需元素的标准有助于...
  • 植物缺少必须元素的症状(图片)
    答:缺磷症状:叶子呈现不正常的暗绿色或紫红色。因磷可运转,故症状首先在老叶出现。缺钾症状:叶色变黄,叶边缘焦枯,而叶组织逐渐坏死。由于叶中部生长仍较快,叶子会形成杯状弯曲或发生皱缩。钾是可运转的元素,故缺素症状首先出现在老叶。缺钙症状: 缺钙初期顶芽、幼叶呈淡绿色,继而叶尖出现典型的...
  • 植物缺素症状口诀是什么?
    答:1、缺氮抑制苗生长,老叶先黄新叶薄,根小茎细多木质,花迟果落不正常。2、缺磷株小分蘖少,新叶暗绿老叶紫,主根软弱侧根稀,花少果迟种粒小。3、缺钾株矮生长慢,老叶尖缘卷枯焦,根系易烂茎纤细,种果畸形不饱满。4、缺锌节短株矮小,新叶黄白肉变薄,棉花叶缘上翘起,桃梨小叶或簇叶。...
  • 植物的缺素症状
    答:缺氮,老叶先表现出缺乏症,老叶先黄;缺磷,老叶先出现缺乏症,老叶叶片呈现红色;缺钾,老叶先出现缺乏症,老叶叶片杂色,叶片有死斑;缺硫,幼叶表现出缺乏症,在叶脉周围呈浅绿色;缺镁,细嫩组织中缺绿,叶片有死斑;缺钙,缺乏时顶芽死亡;缺铁,幼叶缺绿;缺硼,植物无法结实,顶芽死亡;...
  • 植物缺素症状
    答:植物必需的元素有15种,通常根据症状在判断,主要有叶片发黄,瘦弱,畸形,花叶等等
  • 植物缺氮,缺磷,缺钾各表现出的现象是怎样的?
    答:一、缺氮 缺少氮肥的植物表现为植株矮小,叶色发黄。氮肥能够提高作物产量、改善农产品质量,当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。二、缺磷 作物缺磷时,表现为生长迟缓、产量降低。缺少磷肥的作物叶片呈深绿色或蓝绿色...