生物质和天然高分子之间是什么关系

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-08-26
天然高分子化合物和合成高分子化合物之间的区别和联系是什么

天然高分子:蛋白质,DNA,天然橡胶 合成高分子:聚乙烯,聚醚醚酮 区别:天然高分子多于生物体相关 联系:许多天然高分子可以进行人工合成 特殊有点:可以定向地改性,使其具备某种功能,如耐高温,导电等。

糖类:常见的糖类有纤维素、淀粉、麦芽糖和葡萄糖。两个葡萄糖分子之间脱水后,它们的分子就会连到一起,成为淀粉,有利于贮存;更多的葡萄糖分子脱水后聚集起来就形成了一个更大的集团——纤维素,这个物质就相对比较稳定了,自然界中只有某些细菌类(如沼气菌)能把它分解成为淀粉或葡萄糖。有的葡萄糖则被细胞转化为其他物质,参与各种生命活动,在不同的条件下与不同的物质组成为不同的碳框架物质。纤维素是分子量最大的糖类,人的消化系统不能将它分解,所以它不能为人体提供能量,但是现代人们研究发现,它有利于肠内有益细菌的生存,能促进肠胃的蠕动,对人体健康有利。自然界中有的细菌能够将它分解成为简单的葡萄糖。淀粉是比纤维素简单的糖类,是人类重要的食物和原材料,它在人的口腔里在唾液淀粉酶的作用下,被分解为麦芽糖,所以人在多次咀嚼米粉时,感觉有点甜。它可分解为简单的葡萄糖供人体吸收利用。麦芽糖在我们常见的啤酒中含有,它是淀粉分解后的比葡萄糖复杂一些的糖类。葡萄糖是最简单的糖类,能够直接为人体细胞所用,在生物体内,和氧反应生成二氧化碳和水,同时释放出能量,为生命活动提供能量。同时,也参与构成细胞,如核糖。醛类一个羰基(C=O)基团和一个氢基(-H)基团,可以组合成为一个新的基团,叫醛基(CHO)基团,有这个基团的物质叫醛,我们相当熟悉的甲醛,碳框架中只有一个碳的醛类,甲醛的重要特点就是它能使蛋白质稳定,具有防腐作用。又是一种重要的化工原料,广泛应用于工业和化妆品行业,同时,过量的非天然甲醛可以致癌。自然界中的甲醛对人体是有益的,如西红柿是很好的抗衰老食品,它里面就含有微量甲醛,这个含量就决定了它清除自由基的特性。植物燃烧不充分时发出的烟中也有甲醛,所以用烟熏过的肉,能够长久保存。在人工心脏瓣膜移植手术中,把牛的心脏瓣膜经过一种醛(叫戊二醛)的处理后,再移植到人的心脏中,可以使人获得健康。甲醛给人类带来的伤害也不少。据美国有关部门统计,全世界每年生产了五十亿磅甲醛。装修材料中超标,化妆品中超标,非法用于食品防腐等事件也常有报导。酸:一个羰基(C=O)基团和一个羟基(-OH)基团,可以组合成为羧基(COOH)基团,有这个基团的物质叫酸,甲酸、乙酸、丙酸、脂肪酸、氨基酸都是与我们的生活有密切关系的“酸”。甲酸又称蚁酸,蜜蜂蜇人时,会向人体注入了一点蚁酸,会引起局部皮肤红肿和疼痛。乙酸就是醋酸,用粮食做的,因为粮食中的淀粉可分解成为葡萄糖,再在一定的条件下转化成食醋。它连在一起的碳框架碳的个数是两个,所以食醋学名叫乙酸;如果连在一起的碳框架碳的个数为三个,叫丙酸,人们熟悉的乳酸就是一种丙酸,葡萄糖在一定条件下还可转化为乳酸,如人体运动时,由于供氧不足,葡萄糖分解不完全,肌肉处会产生大量乳酸,使肌肉感到酸痛;人体对酸都是比较敏感的,会产生不舒服的反映。只有胃中有盐酸,保持强酸性。如果碳框架中的碳的个数是多个,并且是首尾相接的排成一列的,就统称为脂肪酸;如果再结合一个氨基,就成为大家熟悉的氨基酸。这些酸是人体不可缺少的营养物质。从人体对酸的反应可以知道,现代人们通过高脂肪高蛋白食物,人体摄入了大量的脂肪酸和氨基酸,就形成了酸性体质。醇葡萄糖在一定的条件下还可以变成醇,醇是碳框架中含有羟基(-OH)的物质,如乙醇,就是酒精,在自然界中,熟透的水果可能有酒精的味道,就是葡萄糖变成了乙醇的原因,酿酒就是利用了这一变化。自然界中很多醇都有特殊的香味,现在人们常说的植物精油,有些就是醇。陆地上的动植物都要保持水分,保持水分离不开一种物质,叫“甘油”,它与酒精乙醇是同一个家族的,叫丙三醇,都有(OH)集团,只是甘油碳框架的每个碳原子上都有(OH)基团,所以才叫“丙三醇”。甘油是食品加工业中通常使用的甜味剂和保湿剂,大多出现在运动食品和代乳品中。由于甘油可以增加人体组织中的水分含量,所以可以增加高热环境下人体的运动能力。也是一种重要的化工原料,它和硝酸可以变成“硝酸甘油”,是一种烈性能炸药,同时,也是一种良药,硝酸甘油还常用作强心剂和抗心绞痛药。曾经报导的齐二药事件中,就涉及了一种醇,叫二甘醇,它与丙三醇(甘油)一样能保持水份,曾在牙膏和化妆品和工业中广泛代替甘油使用,齐二药事件后,说明这两种醇在人体内的代谢结果是完全不同的,国家也禁止了在牙膏中用“二甘醇”代替“丙三醇”。那些肾衰竭而去世的受害者,是他们的牺牲,让更多的人们免受了“二甘醇”的危害。酯:生物体内的酸和醇会生成酯,广泛存在于自然界,例如乙酸和乙醇可以生成乙酸乙酯,在酒、食醋和某些水果中就有这种特殊的香味的物质,所以陈年的老酒和老醋都十分香;乙酸异戊酯存在于香蕉、梨等水果中;苯甲酸甲酯存在于丁香油中;水杨酸甲酯存在于冬青油中。脂肪酸的甘油酯是动植物油脂的主要成分;酯是蜡的主要成分。三条脂肪酸链与甘油组合,形成甘油三酸脂,就是一种脂肪类物质,我们平时食用的油,它们的成份都是甘油三酸脂,它们经人体消化后,被分解成为甘油和脂肪酸,被人体吸收。胆固醇、维生素D和生物体内的很多激素如性激素都是脂肪类物质。人体的皮肤分泌的皮脂,也是一种酯,它能保护和滋润我们的皮肤,并具有一种独特的体香味;有些动物能分泌特殊的酯类,如麝能分泌的麝香。天然的酯类大多对人体有益,并具有特殊的香味,人们从中提取出的植物精油和香精,大多都是酯。构成酯的脂肪酸链越长,这种酯就不再是液体油了,而成了固体蜡;脂肪链越长,分子量越大,就成了树脂,如松香、桐油和天然橡胶等,这些都是天然树脂。人类根据这个自然规律,做出了各种各样的人工树脂和高分子材料,如人们熟悉的聚氨脂树脂和丙烯酸树脂,做成了各种塑料制品。它们都无法或很难被大自然中的生物所分解,给生态环境造成了巨大的影响,如二恶英,白色污染。苯还有一种叫“苯”的物质也广泛存在于生物体内,它的碳框架结构为六个碳围成一个环,叫“苯环”,含有这种“苯环”的物质,大多有特殊的香味,被称为“芳香族”物质,在脂肪酸一类物质中,碳没有形成环状,被称为“脂肪族”物质。大多数围成了环的碳框架物质对人体都是有害的,它能使蛋白质沉淀变性,如甲苯,三聚氢胺这些都是有“环”的物质,会对人体造成伤害。我们已经知道有些酯也有香味,有些醇也有香味,有香味的酯和醇一般对人体是有益的。所有芳香族物质,虽然也有香味,可由于“苯环”的存在,一般对人体都是有害的。这两类不同的香味物质,价格和作用都相差很大,在市场经济的今天,肯定有人用便宜的有害的芳香族人工香料混到昂贵的有害的天然香料中,这提醒人们在消费时注意。酚:植物体内的“苯环”如果和一个羟基(-OH)集团组合起来,那就不是醇,而是“酚”了,在自然界中广泛存在于植物的树皮和果实,是单宁的主要组分,它能使植物的花和果实显示各种不同的颜色,也是许多染料的主要组成成份。酚类物质能和氨基结合,使蛋白质稳定,适量的酚类物质对人体有利。如现代人们常提到的“茶多酚”“花青素”等有抗氧化作用能清除“自由基”的物质,就是这类物质。自然界中存在的天然的酚,对人体是有益的。通过化学方法从石油中提炼的苯类酚类等物质,多半能使人致病,如绝大多数染料中有这个苯环,前几年欧美提出某些染料可以致癌,列出一些禁用的染料,他们的人不能用这些致癌物质。所以有些专家提出不染色的内衣对健康有利,各种彩棉制品也开始流行,反映出人们对环保和健康的重视。胺:胺在自然界中分布很广,其中大多数是由氨基酸脱羧生成的。工业制备胺类的方法多是由氨与醇或卤代烷反应制得,产物为各级胺的混合物,分馏后得到纯品。由醛、酮在氨存在下催化还原也可得到相应的胺。工业上也常由硝基化合物、腈、酰胺或含氮杂环化合物催化还原制取胺类化合物。胺的用途很广。最早发展起来的染料工业就是以苯胺为基础的。有些胺是维持生命活动所必需的,但也有些对生命十分有害,不少胺类化合物有致癌作用,尤其是芳香胺,如萘胺、联苯胺等。胺中氮原子的结构,很像氨分子中的氮原子,是以三个sp杂化轨道与氢或烃基相连接,组成一个棱锥体,留下一个sp3杂化轨道由孤电子对占据。

就是玉米淀粉吧 原料的原料是 玉米
植物淀粉是多糖类天然高分子化合物,分子量可达300万Dalton,是国内外普遍关注的可作为高分子材料直接应用的理想原料。植物淀粉分为谷物淀粉(玉米淀粉、高粱淀粉、小麦淀粉、大米淀粉)和薯类淀粉(木薯淀粉、马铃薯淀粉、魔芋淀粉),目前以玉米淀粉应用最多。目前我国玉米产量在1.3-1.5亿吨,只有十分之一的玉米被加工成淀粉,用于纺织业、造纸业、食品业、医疗业等领域,淀粉总量接近1千万吨(其中玉米淀粉接近900万吨;木薯淀粉42万吨,马铃薯淀粉24万吨)。按目前的技术水平看,生产1吨淀粉需1.5吨玉米,耗电200KWh,耗煤0.3吨。如果将这1吨淀粉转化为生物质塑料,可加工成1.0-1.2吨产品,替代通用塑料,节约石化类资源,利国利民。由于没有下游市场的有效拉动机制,玉米淀粉的应用仍局限于变性淀粉的研究范围内。以玉米淀粉为主要原料的生物质塑料的产业化,将有效刺激玉米的种植和玉米淀粉的生产。

生物质塑料是由生物降解塑料的深入研究开发逐渐演变过来的。人们逐渐认识到只有充分利用自然界生成的、可循环再生的植物资源来研发生物质塑料才是实现经济可持续发展的可靠出路。近30年来,乃至半个世纪以来,世界各国都在关注并投入大量人力、物力研究生物质塑料,主要有淀粉与可生物降解塑料混炼、二氧化碳共聚物、生物合成可生物降解塑料、生物合成前体再化学聚合生成可生物降解塑料4大类。后三者价格较高,但成本较高,主要用于医学材料、生物医学工程和组织工程等高价值产品。淀粉与可生物降解塑料混炼生物质材料目前使用最普遍,采用脂肪族聚酯或者脂肪族聚酯混合淀粉制造,脂肪族聚酯主要包括以可再生资源为原料生产的聚乳酸、由微生物合成的聚羟基脂肪酸酯(如PHB、PHA)等,还有以石油为原料合成的聚己内酯(PCL)、聚丁二酸丁二醇酯(PBS)及其共聚体。采用淀粉与可生物降解高分子材料混炼技术可以生产出可完全降解地膜及包装材料,性能接近塑料,并从理论上解决高分子材料可生物降解特性的分子设计、分子剪裁和化学修饰、淀粉的物理、化学改性等问题,可获得性能好、成本低、降解周期可控制的可完全生物降解材料。
我国在“十五”期间加大了开发可生物降解生物质塑料的研究力度,现在已经取得突破性进展,证明了采用淀粉与可生物降解高分子材料混炼技术的先进性和合理性,采用这种技术可以生产一次性包装材料、酒店用品,以及地膜,能够吹塑工艺成型,成本较低。生物质塑料将逐步取代现行地膜和包装材料,推广前景十分广泛。

目前发达国家生物质塑料产业化较多的是合成可完全降解高分子材料,主要有聚已内酯(PCL)、聚乳酸(PLA)、聚羟基丁酸酯(PHB)、聚羟基戊酸酯(PHV),二氧化碳与环氧化合物的共聚物(PPC)等,这些材料确实能完全生物降解,但价格太高(只有PLA、PPC目前价格略低,在2.3万元/吨),主要用于生物医学领域。
由于以淀粉为原料生产生物质塑料,是近年来刚起步的产业化项目,目前国内只有十几条年生产能力在千吨级以上的生产线,如武汉华丽环保科技有限公司、福建百事达公司生产的淀粉与可生物降解高分子树脂共混的生物质材料已经形成年产万吨的生产能力,产品出口韩国、日本。随着技术的日益成熟和人们环保意识的逐渐提高以及石油能源的逐渐枯竭,生物质塑料的产量将会大幅度增加。国内已经有专用生产生物质塑料的双螺杆挤出机、磁振荡吹膜机以及相匹配的检测设备。

生物质由天然高分子化合物组成

你百度知道里就有详细分析啊

  • 资源科学与工程主要课程
    答:8. 生物质材料与化工 - 研究生物质在化工领域的应用,推动绿色材料的发展。9. 生物质能源 - 关注生物质作为可再生能源的潜力与开发策略。10. 生物质制药 - 探讨生物质在药物研发中的应用,提升绿色制药水平。11. 工业生态学 - 学习工业与环境之间的相互作用,强调可持续发展的理念。12. 天然高分子...
  • 我国生物质能的开发利用有哪些?
    答:生物质的物理转化是将农林废弃物,如秸秆、锯屑、稻壳、蔗渣等,干燥后在一定压力的作用下,压制成棒状、粒状、块状的成型燃料或饲料。农林废弃物主要由纤维素、半纤维素和木质素构成,生物质压缩成型主要是靠木质素的胶结作用。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,是高分子物质,在植物中含量约为15...
  • 影响生物质能的燃烧的因素
    答:你好:我来回答你的问题:生物质作为天然的有机燃料,是化学组成为复杂的高分子物质。影响生物质燃料的因素很多,大体分为以下几类:1、水份。由于水是维持生物质生存必不可少的物质之一。当生物质水份大于45%时,燃烧就非常困难。在燃烧过程中,水分因蒸发、汽化和过热要消耗大量的汽化热。2、挥发份。
  • 可降解材料淀粉的发展历史
    答:因此,如何解决废弃包装膜和地膜的环境污染问题,是摆在各界政府及科技工作者面前一项急需解决的难题。寻求塑料的代替物势在必行。20世纪七、八十年代,人们首先想到的就是可降解的天然高分子生物质材料。从添加淀粉到纸塑替代,从乳酸聚合到热塑性玉米淀粉材料,可以说技术上有了很大的进展,但产品的性价比...
  • 河南工业大学化学化工学院研究生教育
    答:分析化学:涉及光谱分析(01方向)、色谱分析(02方向)和电化学分析(03方向)。有机化学:着重于生物有机化学(01方向)、有机合成化学(02方向)和有机分析化学(03方向)。高分子化学:研究方向包括高分子分子设计与合成(01方向)、高分子结构与性能(02方向)以及天然高分子的化学修饰与改性(03...
  • 了解人工合成生物降解高分子方面的研究情况,列举其中的一些典型实例的合...
    答:也就是通常所说的生物降解塑料。 生物分解塑料分类:按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性材料、微生物合成高分子材料和化学合成高分子材料。目前具有应用前景的生物分解塑料有:聚3-羟基烷酸酯(PHA)、聚乳酸(PLA)、聚ε-己内酯(PCL)和聚丁二酸丁二醇酯(PBS)。 1.聚3-羟基烷酸酯(PHA)...
  • 木质纤维素和纤维素的区别
    答:生物质燃烧材料:由于木质素的碳氢组成比(12:1)和天然石油(8:1)近似,且有较多的氧元素,故而木质素是一种高能物质,有良好的生物质燃烧作用 抗老化材料:由于木质素中含有大量羟基结构高温下可与多种功能性有机高分子材料发生醚化作用,增强高温下材料的强度,故而木质素有很好的抗热老化作用。 抗氧化材料:由于木质...
  • 生物质能源就业前景
    答:以及能在生物质能源工程、核能工程等领域从事教学、研究、设计和管理工作。6. 专业课程包括《生物质化学》、《生物质能源原理与工程》、《生物质材料》、《生物质炼制设备与控制》、《生物质炼制工厂设计》、《天然高分子改性材料》、《生物质基化学品》等。
  • 生物可降解塑料有哪些
    答:与同类产品比较,聚酯生物分降塑料的优点:1)耐热性好。这促使它在餐饮领域达到推广;2)加工条件要求不高;3)易保存,耐水解。聚丁二酸丁二醇酯(PBS)用途极为广泛,可用于包装、餐具、化妆品瓶及药品瓶、一次性医疗用品、农用薄膜、农药及化肥缓释材料、生物医用高分子材料等领域。五、脂肪族芳香族...
  • 研发降解薄膜需要有那些基础知识?
    答:合成高分子材料由于具有质轻、耐腐蚀等优异特性,很大程度上代替了传统天然材料如玻璃、金属、陶瓷等。但塑料由于在自然环境中的化学稳定性以及广泛使用,其废弃物对环境造成了极大的负担。因此,开发具有生物降解性能的高分子材料对于解决塑料废弃物污染具有重大意义。近年来,降解塑料技术日趋成熟,而利好政策的出台进一步加速...