动物毒素结构与功能、抗菌肽与生物天然免疫、抗虫生物与抗虫基因资源开发等方向的研究进展和发展趋势

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-17
生物作业!!望众大侠出手帮助!!

.生物技术有现代生物技术,种子学,植物生理,植物保护,遗传学,食用菌的培养,生物化学等。
2.1928 A.Fleming发现青霉素
1943 青霉素大规模工业化生产
1944 0.T.Avery 等用实验证明DNA是遗传物质
1953 J.D.Watson 和 F.H.C.Crick发现DNA双螺旋结构
1961-1966 破译遗传密码
1970 分离出第一个Ⅱ类限制性内切酶
1972 DNA体外重组技术建立
1975 G.J.F.Kohler和C.Milstein建立杂交瘤技术
1976 DNA测序技术诞生
1978 第一次生产出基因工程胰岛素
1980 美国最高法院裁定基因工程产品可获专利
1980 第一家生物技术类公司在NASDAQ上市
1981 第一只转基因动物(老鼠)诞生
1982 DNA重组技术生产的家畜疫苗首次在欧洲上市
1983 人工染色体首次成功合成
1985 基因指纹技术首次作为证据亮相法庭
1986 第一个转基因作物获批准田间试验
1986 第一个DNA重组人体疫苗(乙肝疫苗)研制成功
1988 PCR技术问世
1989 转基因抗虫棉花获批准田间试验
1990 美国批准第一个体细胞基因治疗试验
1990 人类基因组计划正式启动
1990 第一个转基因动物(鲑鱼)获批准养殖
1993 生物工程产业组织(BIO)成立
1994 转基因保鲜番茄在美国上市
1997 英国培养出第一只克隆羊“多莉”
1998 人体胚胎干细胞系建立
2000 人类基因组工作框架图完成
2001 重要粮食作物——水稻基因图在中国完成
2003 人类基因组测序工作完成
3.不知!
4.基因工程又叫做基因拼接技术或DNA重组技术。这种技术是在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的基因产物。通俗地说,就是按照人们的主观意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。

基因工程是在DNA分子水平上进行设计施工的。DNA分子的直径只有2.0nm(粗细只有头发丝的十万分之一),其长度也是极其短小的。如流感嗜血杆菌的DNA,长度只有0.83?m,即使是较大的大肠杆菌,其长度也只有1.36?m。要在如此微小的DNA分子上进行剪切和拼接,是一项非常精细的工作,必须要有专门的工具。
5.细胞工程是指应用细胞生物学和分子生物学的原理和方法,通过某种工程学手段,在细胞整体水平或细胞器水平上,按照人们的意愿来改变细胞内的遗传物质或获得细胞产品的一门综合科学技术。根据细胞类型的不同,可以把细胞工程分为植物细胞工程和动物细胞工程两大类。
克隆通常是一种人工诱导的无性生殖方式或者自然的的无性生殖方式(如植物)。一个克隆就是一个多细胞生物在遗传上与另外一种生物完全一样。克隆可以是自然克隆,例如由无性生殖或是由于偶然的原因产生两个遗传上完全一样的个体(就像同卵双生一样)。但是我们通常所说的克隆是指通过有意识的设计来产生的完全一样的复制。
6.不知!
7.发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。发酵工程的内容包括菌种的选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离提纯等方面。
1)“发酵”有“微生物生理学严格定义的发酵”和“工业发酵”,词条“发酵工程”中的“发酵”应该是“工业发酵”。
(2)工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺被称为“发酵工艺”。为实现工业化生产,就必须解决实现这些工艺(发酵工艺)的工业生产环境、设备和过程控制的工程学的问题,因此,就有了“发酵工程”。
(3)发酵工程是用来解决按发酵工艺进行工业化生产的工程学问题的学科。发酵工程从工程学的角度把实现发酵工艺的发酵工业过程分为菌种、发酵和提炼(包括废水处理)等三个阶段,这三个阶段都有各自的工程学问题,一般分别把它们称为发酵工程的上游、中游和下游工程。
(4)微生物是发酵工程的灵魂。近年来,对于发酵工程的生物学属性的认识愈益明朗化,发酵工程正在走近科学。
(5)发酵工程最基本的原理是发酵工程的生物学原理。
(6)发酵工程有三个发展阶段。
现代意义上的发酵工程是一个由多学科交叉、融合而形成的技术性和应用性较强的开放性的学科。发酵工程经历了“农产手工加工——近代发酵工程——现代发酵工程”三个发展阶段。
发酵工程发源于家庭或作坊式的发酵制作(农产手工加工),后来借鉴于化学工程实现了工业化生产(近代发酵工程),最后返璞归真以微生物生命活动为中心研究、设计和指导工业发酵生产(现代发酵工程),跨入生物工程的行列。
原始的手工作坊式的发酵制作凭借祖先传下来的技巧和经验生产发酵产品,体力劳动繁重,生产规模受到限制,难以实现工业化的生产。于是,发酵界的前人首先求教于化学和化学工程,向农业化学和化学工程学习,对发酵生产工艺进行了规范,用泵和管道等输送方式替代了肩挑手提的人力搬运,以机器生产代替了手工操作,把作坊式的发酵生产成功地推上了工业化生产的水平。发酵生产与化学和化学工程的结合促成了发酵生产的第一次飞跃。
通过发酵工业化生产的几十年实践,人们逐步认识到发酵工业过程是一个随着时间变化的(时变的)、非线性的、多变量输入和输出的动态的生物学过程,按照化学工程的模式来处理发酵工业生产(特别是大规模生产)的问题,往往难以收到预期的效果。从化学工程的角度来看,发酵罐也就是生产原料发酵的反应器,发酵罐中培养的微生物细胞只是一种催化剂,按化学工程的正统思维,微生物当然难以发挥其生命特有的生产潜力。于是,追溯到作坊式的发酵生产技术的生物学内核(微生物),返璞归真而对发酵工程的属性有了新的认识。发酵工程的生物学属性的认定,使发酵工程的发展有了明确的方向,发酵工程进入了生物工程的范畴。
发酵工程是指采用工程技术手段,利用生物(主要是微生物)和有活性的离体酶的某些功能,为人类生产有用的生物产品,或直接用微生物参与控制某些工业生产过程的一种技术。人们熟知的利用酵母菌发酵制造啤酒、果酒、工业酒精,乳酸菌发酵制造奶酪和酸牛奶,利用真菌大规模生产青霉素等都是这方面的例子。随着科学技术的进步,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的应用前景。例如,用基因工程的方法有目的地改造原有的菌种并且提高其产量;利用微生物发酵生产药品,如人的胰岛素、干扰素和生长激素等。
已经从过去简单的生产酒精类饮料、生产醋酸和发酵面包发展到今天成为生物工程的一个极其重要的分支,成为一个包括了微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。现代发酵工程不但生产酒精类饮料、醋酸和面包,而且生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,生产天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶、维生素和单细胞蛋白等。
从广义上讲,发酵工程由三部分组成:是上游工程,中游工程和下游工程。其中上游工程包括优良种株的选育,最适发酵条件(pH、温度、溶氧和营养组成)的确定,营养物的准备等。中游工程主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。这里要有严格的无菌生长环境,包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;还有种子培养和生产培养的不同的工艺技术。此外,根据不同的需要,发酵工艺上还分类批量发酵:即一次投料发酵;流加批量发酵:即在一次投料发酵的基础上,流加一定量的营养,使细胞进一步的生长,或得到更多的代谢产物; 连续发酵:不断地流加营养,并不断地取出发酵液。在进行任何大规模工业发酵前,必须在实验室规模的小发酵罐进行大量的实验,得到产物形成的动力学模型,并根据这个模型设计中试的发酵要求,最后从中试数据再设计更大规模生产的动力学模型。由于生物反应的复杂性,在从实验室到中试,从中试到大规模生产过程中会出现许多问题,这就是发酵工程工艺放大问题。下游工程指从发酵液中分离和纯化产品的技术:包括固液分离技术(离心分离,过滤分离,沉淀分离等工艺),细胞破壁技术(超声、高压剪切、渗透压、表面活性剂和溶壁酶等),蛋白质纯化技术(沉淀法、色谱分离法和超滤法等),最后还有产品的包装处理技术(真空干燥和冰冻干事燥等)。
此外,在生产药物和食品的发酵工业中,需要严格遵守美国联邦食品和药物管理局所公布的cGMPs的规定,并要定时接受有关当局的检查监督。

假单胞菌载体有不少,但表达载体多是基于Plac 和Ptac两类启动子的。你查一查文献应该能找到。可能现在有基于新的启动子的表达载体 ,请高手补充。

由动物体产生的、极少量即可引起中毒的物质。
动物毒素大多是有毒动物毒腺制造的并以毒液形式注入其他动物体内的蛋白类化合物,如蛇毒、蜂毒、蝎毒、蜘蛛毒、蜈蚣毒、蚁毒、河豚毒、章鱼毒、沙蚕毒等以及由海洋动物产生的扇贝毒素、石房蛤毒素、海兔毒素等。毒液中还会有多种酶。
根据毒素的生物效应,动物毒素可分为神经毒素、细胞毒素、心脏毒素、出血毒素、溶血毒素、肌肉毒素或坏死毒素等。
不同动物所制造的毒素种类和生物效应均不相同,如蜂毒主要是神经毒素、溶血毒素和酶;蝎毒含神经毒素和酶;蜘蛛毒素含10多种蛋白、坏死毒素和酶;蛇毒所含毒素类型因蛇的种、属不同而有很大差异。动物毒素对人与动物有毒害作用,但也有一定药用价值。是农药开发的潜在资源。根据沙蚕毒的化学结构,已合成出类似物杀虫剂杀螟丹、杀虫双、杀虫环等,并已大量生产应用。

抗菌肽原指昆虫体内经诱导而产生的一类分子量在4KD左右,具有抗菌活性的碱性多肽物质。最初,人们在研究北美天蚕的免疫机制时,发现其滞育蛹经外界刺激诱导后,其血淋巴中产生了具有抑菌作用的多肽物质,这类抗菌多肽被命名为天蚕素(Cecropins)。后来,从其他昆虫以及两栖类动物、哺乳动物中,也分离到结构相似的抗菌多肽。迄今为止,在不同动物组织中已发现了很多具有抗菌作用的蛋白质和多肽,已有70多种抗菌多肽的结构被测定,抗菌肽的概念得到了极大的扩展。
根据抗菌肽的结构,可将其分为5类:(1)单链无半胱氨酸残基的α-螺旋,或由无规卷曲连接的两段α-螺旋组成的肽;(2)富含某些氨基酸残基但不含半胱氨酸残基的抗菌肽;(3)含1个二硫键的抗菌多肽;(4)有2个或2个以上二硫键、具有β-折叠结构的抗菌肽;(5)由其它已知功能的较大的多肽衍生而来的具有抗菌活性的肽。其中最早分离到的Cecropins和从非洲爪蟾中分离到的Magainins等属于第一类抗菌肽,通常也将其称为Cecropin类抗菌肽,目前对此类抗菌肽的研究也较深入。
抗菌肽的生物学效应
抗菌肽具有广谱抗菌活性,对细菌有很强的杀伤作用,尤其是其对某些耐药性病原菌的杀灭作用更引起了人们的重视。
除此之外,人们还发现,某些抗菌肽对部分病毒、真菌、原虫和癌细胞等有杀灭作用,甚至能提高免疫力、加速伤口愈合过程。
抗菌肽的广泛的生物学活性显示了其在医学上良好的应用前景。
抗菌肽的作用机制
自从发现抗菌肽以来,已对抗菌肽的作用机理进行了大量研究。目前已知的是,抗菌肽是通过作用于细菌细胞膜而起作用的,在此基础上,提出了多种抗菌肽与细胞膜作用的模型。但严格地说,抗菌肽以何种机制杀死细菌至今还没有完全弄清楚。
目前一般认为,Cecropin类抗菌肽作用于细胞膜,在膜上形成跨膜的离子通道,破坏了膜的完整性,造成细胞内容物泄漏,从而杀死细胞。
对于抗菌肽破坏膜的完整性,使细胞内外屏障丧失,从而杀死细菌这一观点已得到基本统一的认识,但对其具体作用过程、是否存在特异性的膜受体、有无其它因子协同等问题尚不十分清楚,存在不同看法。不同抗菌肽的作用机制可能不一样,尚有待进一步研究
抗菌肽基因工程
抗菌肽在动物体内含量极微。从动物体内提取抗菌肽产量低、费时长、工艺复杂、费用昂贵,无法实现大规模生产,这成为制约抗菌肽进入实际应用的最大障碍。因此,开展抗菌肽基因工程研究具有重要意义。
目前,已进入临床应用的基因工程药物多数是采用原核表达系统生产的,但由于抗菌肽对细菌的杀伤作用,不能用原核表达系统直接表达具有生物活性的抗菌肽,而如果采用融合蛋白的形式表达,将给表达产物的后处理带来很大麻烦。因此,国内外的研究者多采用真核表达系统进行抗菌肽基因工程研究。
近年来,以酵母为基因工程受体菌的研究引起人们的重视,酵母具有比大肠杆菌更完备的基因表达调控机制和对表达产物的加工修饰及分泌能力,并且不会产生内毒素,是基因工程中良好的真核基因受体菌。自1978年Hinnen等首先试验酵母转化成功后,已有人干扰素基因、乙型肝炎表面抗原基因、α-淀粉酶基因等数十种外源基因在酵母中获得表达。国内研究者大量研究表明,利用酵母表达抗菌肽是一条可行的道路,如能在表达产率上得到进一步提高,将为抗菌肽早日进入临床应用奠定良好的基础。
一、概述
抗菌肽是生物体内经诱导产生的一种具有生物活性的小分子多肽,分子量在2000~7000左右,由20~60个氨基酸残基组成。这类活性多肽多数具有强碱性、热稳定性以及广谱抗菌等特点。世界上第一个被发现的抗菌队是1980年由瑞典科学家G.Boman等人经注射阴沟通杆菌及大肠杆菌诱导惜古比天蚕蛹产生的具有抗菌活性的多肽,定名为Cecropins。此后数年间,人们相继从细菌、真菌、两栖类、昆虫、高等植物、哺乳动物乃至人类中发现并分离获得具有抗菌活性的多肽。由于最初人们发现这类活性多肽对细菌具有广谱高效杀菌活性,因而命名为“antibactetial pepiides,ABP”,中文译为抗菌肽,其原意为抗细菌肽。随着人们研究工作的深入开展,发现某些抗细菌肽对部分真菌、原虫、病毒及癌细胞等均具有强有力的杀伤作用,因而对这类活性多肽的命名许多学者倾向于称之为”peptide antibiotics”一多肽抗生素。
二、抗菌肽的理化性质、作用机理和作用范围
天然抗菌肽通常是由30多个氨基酸残基组成的碱性小分子多肽,水溶性好,分子量大约为4000道尔顿左右。大部分抗菌肽具有热稳定性,在l00℃下加热10~15min仍能保持其活性。多数抗菌肽的等电点大于7,表现出较强的阳离子特征。同时,抗菌肽对较大的离子强度和较高或较低的pH值均具有较强的抗性。此外,部分抗菌肽尚具备抵抗胰蛋白酶或胃蛋白酶水解的能力。
抗菌肽功能从目前的研究结果来看,一般认为抗菌肽杀菌机理主要是作用于细菌的细胞膜,破坏其完整性并产生穿孔现象,造成细胞内容物溢出胞外而死亡。首先由静电吸引而附于细菌膜表面,疏水性的C端插入膜内疏水区并改变膜的构象,多个抗菌肽在膜上形成离子通道而导致某些离子的逸出而死亡。亦有学者认为抗菌肽作用于膜蛋白引起凝聚、失活及离子通道,引起膜渗透性改变而导致死亡,亦有学者提出抗菌肽是否存在特异性的膜受休及有无其它因子的协同作用等问题。不同类别的抗菌肽的作用机理可能不一样。
抗菌肽多数具有强碱性、热稳定性以及广谱抗菌等特点。某些抗菌肽对部分真菌、原虫、病毒及癌细胞等均具有强有力的杀伤作用。
1. 抗菌肽对细菌的杀伤作用
抗菌肽对革兰氏阴性及阳性细菌均有高效广谱的杀伤作用。国内外已报道至少有113种以上的不同细菌均能被抗菌肽所杀灭。
2.抗菌肽对真菌的杀伤作用
最先发现具有抗真菌作用的抗菌肽是从两栖动物蛙的皮肤中分离到的蛙皮素(Magainins),它不仅作用于C+、C-,对真菌及原虫亦有杀伤作用。Defensins是一种动物细胞内源性杀菌多肽,是从吞噬细胞中分离出来的,具有很宽的抗菌谱,对G+的杀伤作用大于对G-的杀伤作用,它也作用于真菌和部分真核细胞。Cecropin A及其类似物如天蚕素——蜂毒素杂合肽对感染昆虫的真菌具有一定的杀伤作用。
3.抗菌肽对原虫的杀伤作用
抗菌肽Magainins对原虫有杀伤作用。实验证明抗菌肽可以杀死草履虫、变形虫和四膜虫。柞蚕抗菌肽D对阴道毛滴虫亦有杀伤作用。
4. 抗菌肽对病毒的杀伤作用
Melitiin和Cecropins在亚毒性浓度下通过阻遏基因表达来抑制HIV-1病毒的增殖。Magainin-2及合成肽Modelin1 和Moderln-5对疱疹病毒HSV-1和HSV-2有一定的抑制效果。这些肽对病毒被膜直接起作用,而不是抑制病毒DNA的复制或基因表达。
5.抗菌肽对癌细胞的杀伤作用
抗菌肽对正常哺乳动物细胞及昆虫细胞无不良影响,但对癌细胞株则有明显杀伤作用。这种选择性机理可能与细胞骨架有关。已有有关抗菌肽对宫颈癌细胞、直肠癌细胞及肝癌细胞的杀伤作用与剂量相关的效应的报道。
三、抗菌肽的发展现状
迄今为止,从不同的生物体内诱导分离获得的抗菌肽已不下200多种,仅从昆虫中分离获得的就多达170余种。人们根据抗菌肽的来源及结构性质进行了分类。根据抗菌肽的结构,可将其分为5类
1.具有螺旋结构的线性多肽 cecropins是第一个被发现的动物抗菌肽,1980年,由Boman等从美国天蚕蛹中分离得到。该类多肽抗生素一般含有37~39个氨基酸残基,不含半胱氨酸,其N端区域具有强碱性,可形成近乎完美的双亲螺旋结构,而在C端区域可形成疏水螺旋,两者之间有甘氨酸和脯氨酸形成的铰链区,多数多肽的C端被酰胺化,酰胺化对其抗菌活性具有重要作用。此后,人们相继从家蚕、柞蚕、果蝇、麻蝇中分离到了cecropins类抗菌肽。1989年,Lee等人从猪小肠中分高到了cecropin P1,说明了cecropins可能在动物中广泛存在。cecropins对革兰阳性菌、阴性菌部具有很强的杀伤力,而对真菌和真核细胞没有毒性。目前cecropins已被人工合成并已商品化。
magainins也是较早发现的一类具有双亲螺旋结构的抗菌肽。最初是从蟾蜍的皮肤中分离得到的,后来在哺乳动物的神经组织和肠组织中发现了其类似物。magainins对革兰阳性菌、阴性菌、真菌、原生动物都有杀伤作用,但是对革兰阴性菌的活性比cecropins要低10倍左右。
此外,从一些动物的再生性器官和两栖类的多种组织器官中分离得到了一些具有螺旋结构的多肽,如来源于南美蛙的dermaseptin和来源于树蛙的bombininh。
2.富含某种氨基酸的线性多肽 apidaecins是从蜜蜂中分离得到的富含脯氨酸的多肽抗生素,一般含有16~18个氨基酸残基,其中脯氨酸含量高达33%,精氨酸含量可达17%。apidaecins对某些革兰阴性菌具有很强的活性,而对革兰阳性菌不起作用。apidaecins对某些革兰阴性的植物病原菌和肠杆菌科的致病菌的高杀伤力,使其在植物抗细菌病基因工程和食品工业中有着很好的应用前景。
drosocin是来源于果蝇的一种富含脯氨酸的抗菌肽,在结构上与apidaecins具有一定的相似性,但是在其11位的苏氨酸羟基上连接着一个O-二糖链(-N-乙酰半乳糖胺-半乳糖。)
coleoptericin和hemiptericin分别来源于鞘翅目和半翅目昆虫,一级结构中富含甘氨酸,分子量一般较大。Oppenheim等人从人的腮腺和下颌腺分泌物中分离得到了一组富含组氨酸的抗菌肽,长度在7~38个氨基酸残基不等,被称为histatins。对于引起口腔感染的多种微生物具有活性。indolicidin是来源于牛中性粒细胞的多肽抗生素,因其13个氨基酸中含有5个色氨酸而得名。其C端是酰胺化的。对大肠杆菌和金黄色葡萄球菌都具有很强的杀菌活性。
3.含有一个二硫键的多肽 这是一类数量很少的抗菌肽,第1个被发现的这类多肽是bactenecin,来源于牛中性粒细胞。其12个氨基酸中含有4个精氨酸,在其第2位和第11位氨基酸残基间形成二硫键。bactenecin对大肠杆菌和金黄色葡萄球菌都有活性。这类多肽中还包括一些来源于蛙类皮肤的多肽抗生素,一般在C端有一个由7个氨基酸形成的“loop”和一个长的N端“尾巴”,如brevinin-1,brevinin-2。
4.含有两个或两个以上二硫键的多肽 这类多肽的典型代表是defensins,最初发现的α-defensins来源于哺乳动物的组织中,一般含有29~34个氨基酸残基,其中6个保守的半胱氨酸形成3个分子内二硫键,此外,其第6位和第15位的精氨酸,第24位的甘氨酸也是保守的。α-defensins可形成3层的β片层结构,通过3个二硫键和Arg-6与Glu-24之间的盐桥而被稳定。目前,defensins已被合成并已商品化。defensins对多种细菌和某些真菌具有杀伤作用,并且对真核细胞有一定的毒性。defensins对革兰阳性菌的活性比革兰阴性菌强。defenssins的活性比cecropins弱,并且通常在低离子强度下起作用。 β-defensins比α-defensins大一些,一般含有38~42个氨基酸残基。都含有3个二硫键和4~8个精氨酸。昆虫defensins在C末端与α-defensins相似,但是只有两个β片层结构,中间有一段α螺旋起稳定作用,主要对革兰阳性菌起作用,而对真菌没有作用。 植物defensins一般有45~54个氨基酸残基,可形成4个二硫键,3个β片层结构和一个α螺旋结构。植物defensins一般只对真菌起作用而对细菌没有作用。不同植物defensins对真菌的抗菌谱不同。 thionins也是一类来源于植物的多肽抗生素,含有45~47个氨基酸残基,有6个或8个半胱氨酸形成的3个或4个二硫键。其二级结构可形成2个反平行的α螺旋结构和2个反平行的β片层结构。thionins抑制多种植物致病细菌和真菌,但是对假单胞菌属和欧文氏菌属的细菌不起作用。
5.羊毛硫抗生素 羊毛硫抗生素(1antibiotics)是指一些由细菌产生的,由基因编码在核糖体中合成,经翻译后加工而含有一些特殊有机基团的多肽抗生素。其中研究最广泛的是nisin。它是来源于乳酸菌的一种抗菌肽,成熟多肽由34个氨基酸组成,含有羊毛硫氨酸、甲基羊毛硫氨酸等特殊基因。主要对革兰阳性菌起作用,而对革兰阴性菌不起作用,已被广泛应用作食品保鲜剂。nisin及其类似物在医药上的应用研究也正在进行。
四、抗菌肽在医药工业的应用及前景
目前,所有的常规抗生素都出现了相应的抗药性致病株系,致病菌的抗药性问题已经日益严重地威胁着人们的健康。寻找全新类型的抗生素是解决抗药性问题的一条有效途径。抗菌肽因为抗菌活性高,抗菌谱广,种类多,可供选择的范围广,靶菌株不易产生抗性突变等原因,而被认为将会在医药工业上有着广阔的应用前景。目前,已有多种多肽抗生素正在进行临床前的可行性研究,其中magainins已经进入三期临床试验阶段。一些多肽抗生素在医药研究中的进展情况。
现在大多数临床试验是用于局部治疗,这种治疗应该是安全和有效的,因为一些毒性更强的多肽和脂多肽,如短杆菌肽S,多粘菌素B已被用于制造皮肤软膏。这些多肽也可用于那些常规抗生素和常规疗法无效的地方。利用粉剂的方法治疗肺部感染是一个很有前途的发展方向。口服药物可能会被用于治疗肠道感染,nisin正在进行抗螺旋杆菌的临床试验。至少有两个公司正在开发非肠道给药的治疗方法。
抗菌肽基因工程在农业上的应用,主要是用于转化农作物培育抗病品种。由于抗菌肽对多种植物病原菌有杀菌活性,将抗茵肤基因导人植物体内表达可望提高其抗病能力。
抗菌肽基因用于转化农作物培育抗病品种,如抗马铃薯青枯病、烟草抗青枯病及水稻抗白叶枯病等已有良好的开端。
抗菌肽对正常哺乳动物细胞无不良影响,但对癌细胞株,部分病毒则有明显杀伤作用。这预示抗菌肽在治疗及预防癌症和抗病毒方面具有良好的应用前景。
由于某些多肽抗生素对一些植物致病细菌和真菌具有很强的抗性,一些多肽抗生素已经被用于植物抗病基因工程。如Jaynes等将两个cecropin的类似物基因,Shiva-I基因和SB-37基因转入烟草,发现Shiva-I的转基因烟草对青枯病具有一定的抗性,而SB-37的转基因烟草没有抗性。Huang等的研究表明将cecropin类多肽MB-39基因与大麦、淀粉酶信号肽基因融合后转入烟草中,所得植株野火病的抗性增强。在国内,黄大年等利用cecropinB基因转化水稻,得到了一些对水稻细条病具有不同抗性的植株。
抗菌肽动物转基因的研究也已经取得了一些进展,比如可以通过基因工程的方法来阻断一些虫媒疾病的传播,Possani等的研究表明,在蚊子体内表达Shiva-3可以抑制疟疾的传播,但是在蚊子的转基因技术方面还存在着一些困难;Durasu1a等通过在长红猎蟋的共生菌中表达CecropinA明显减少了其体内锥虫的数量。Reed等将Shiva-Ia转入小鼠中,转基因小鼠对布鲁氏杆菌的抵抗力显著增强,这为人工培育抗病饲养动物新品种提供了新思路。此外,抗菌肽在食品防腐,鲜花保鲜和动物饲料添加剂等方面的应用研究也正在进展之中。
五、国内抗菌肽研究开发现状
华南农业大学教授黄自然及其研究组从我国特有物种柞蚕蛹中经人工诱导和提取的产物(溶菌酶)--抗菌肽,是经过十几年的努力取得的一项首创性科研成果。抗菌肽医药产品即以生物工程方法将抗菌肽纯化为一类新型药物。具有广谱性杀菌作用,并能抑制乙型肝炎病毒的复制。特别是对耐药性细菌,抗菌肽有较强杀灭作用,并能选择性杀伤肿瘤细胞,是一种具有作用靶点及新作用机制的化合物。
南开大学、天津大学和大港油田联手攻关,成功地从苍蝇体内分离出抑制多种病源菌和病毒的抗菌肽。目前多种抑菌实验已经完成,科研人员正在着手进一步纯化从苍蝇幼虫体内提取出的抗菌肽。
中国科学院上海生化与细胞所张永莲等人对名为Binlb的鼠源新基因的功能研究取得突破(批准号:39893320)。该基因只在附睾头部上皮细胞中特异表达具有抗菌功能的多肽,生育旺期表达最高。这是目前第一个发现与附睾防御系统相关的天然抗菌肽,人体也类似,也是国际上发现的第一个与男性生殖系统炎症相关的功能基因,第一次证实附睾具有免疫系统。其研究成果:《大鼠生殖系统中的一个抗菌肽基因》,于2001年3月在《Science》上发表,是我国生命科学基础研究成果第一次在《Science》上刊载。
中国水稻所黄大年教授主持的蚕抗菌肽B基因转化水稻的研究,抗菌肽B基因转化植株表现出对白叶枯病合细条病的抗性有明显提高,为水稻白叶枯病的抗性育种提供了一条新的途径.将该基因导入推广品种,可以获得农艺性状保持优良.另外,转基因第二代植株仍然表现对白叶枯病合细条病的抗性。
中国农业科学院生物技术研究中心研究员贾士荣完成了抗菌肽Cecropin B及Shiva A基因的合成,构建了表达载体,并将这些基因成功地导入我国七个马铃薯主栽品种(品系),获得1050个转基因株系,经多年多点抗病性鉴定,初步筛选出三个较起始品种抗病的株系。
黄亚东,郑青,王林川,廖富苹,黄自然等采用病毒载体pAcGP67B,通过PCR点突变技术将柞蚕抗菌肽基因起始密码ATG删除以利于形成信号肽切除位点的编码序列。gp67信号肽的插入能引导表达产物分泌到细胞外而便于表达产物的鉴定及其生物活性的测定,对柞蚕抗菌肽D基因重组杆状病毒表达载体的构建及其表达。
六、总结
抗菌肽要成为药物,目前还需要解决一些问题。首先是来源问题。由于昆虫抗菌肽的天然资源有限,化学合成和基因工程便成为获取抗菌肽的主要手段。化学合成肽类,成本较高。而通过基因工程,在微生物中直接表达抗菌肽基因,可能造成宿主微生物自杀而不能获得表达产物。以融合蛋白的形式表达抗菌肽基因,虽然可以克服这一缺点,但仍有表达产物少的问题。尽管来自青蛙皮肤的抗菌肽maganin类作为基因工程药物已进入临床II,III期实验,但人们认为,只有每克价格低于10美元,抗菌肽才可能商品化。因此,如何提高抗菌肽的生产效率,降低成本,是应用抗菌肽必须解决的问题。其次,与传统抗生素相比,昆虫抗菌肽的抗菌活性还不够理想。改造已有抗菌肽和设计新抗菌肽分子是创造高活力抗菌肽的有效途径。这就需要进一步研究抗菌肽结构与活性的关系和作用机理,为抗菌肽分子的改造和设计提供足够的理论依据

汗,你问的范围太广了!

抗菌肽作为饲料添加剂的研究最近几年才发展起来,还处于探索阶段,距形成成熟的技术、大规模的应用到动物生产中还有很多问题需要解决:①抗菌肽的天然资源有限,化学合成和基因工程便成为获取抗菌肽的主要手段。但化学合成的生产成本昂贵,目前还无法投入大规模的生产。而通过基因工程,在微生物中直接表达抗菌肽基因,可能会造成宿主微生物自杀而不能获得表达产物。以融合蛋白的形式表达抗菌肽基因,虽然可以克服这一缺点,但仍有表达产物少的问题。②与传统抗生素相比,昆虫抗菌肽的抗菌活性还不够理想。改造已有抗菌肽和设计新抗菌肽分子是创造高活力抗菌肽的有效途径。这就需要进一步研究抗菌肽结构与活性的关系和作用机理,为抗菌肽分子的改造和设计提供足够的理论依据。③抗菌肽在体内容易被蛋白酶水解,需要用脂质包被或对其进行化学修饰来保护,因此还需对它的释放机制、受体结合、降解活性及其类似物的结构与活性的关系进行研究。

但可以预见,随着抗菌肽基因工程技术研究的深入和分子生物学技术在抗菌肽上的成熟应用,不久将会有一批用现代生物技术方式大量生产且抗菌活性非常高的抗菌肽新产品出现,也意味着在饲料行业将会出现一个新的时代—“肽时代”

  • 抗菌肽和抗生素有什么区别?
    答:10分钟内被吸收,吸收完毕,100%被吸收,分布广泛等7抗生素存在吸收利用不完全,以及代谢造成的蓄积中毒危险,对肝肾损伤,抗菌肽无蓄积中毒现象,并有协助排毒功能8抗生素杀菌时不分好坏,既杀有害菌,也杀有益菌,具有双刃性,对宿主正常细胞有损害。抗菌肽可以针对不同靶目标发挥其抗菌作用,有生物导弹功能...
  • 哪些抗菌肽走向临床应用?应用范围(适应症)是什么?它是如何生产的(较为...
    答:(二)根据抗菌肽的结构分 根据结构可将抗菌肽分为两性分子α-螺旋的抗菌肽、含有-S-S-的抗菌肽、富含Pro的抗菌肽、富含Gly的抗菌肽。 (三)根据抗菌肽的来源分 根据来源可将抗菌肽分为哺乳动物抗菌肽、昆虫抗菌肽、植物抗菌肽、细菌抗菌肽、病毒抗菌肽等。 二、生物活性 抗菌肽是一种非特异性免疫分子,同...
  • 抗菌肽的储存对抗菌性能的影响
    答:随着人们研究工作的深入开展,发现某些抗细菌肽对部分真菌、原虫、病毒及癌细胞等均具有强有力的杀伤作用,因而对这类活性多肽的命名许多学者倾向于称之为”peptide antibiotics”一多肽抗生素。13年11月,中科院昆明动物研究所研究员张云课题组发现,天然抗菌肽具有选择性免疫激活和调节功能,对败血症有良好的...
  • 苍蝇的抗菌肽可不可以用在人的身上
    答:抗菌肽原指昆虫体内经诱导而产生的一类分子量在4KD左右,具有抗菌活性的碱性多肽物质。最初,人们在研究北美天蚕的免疫机制时,发现其滞育蛹经外界刺激诱导后,其血淋巴中产生了具有抑菌作用的多肽物质,这类抗菌多肽被命名为天蚕素(Cecropins)。后来,从其他昆虫以及两栖类动物、哺乳动物中,也分离到结构相似的抗菌多肽。迄...
  • 南京农业大学微生物专业有那些导师?
    答:两栖、爬行类生物活性物质的分离;结构与功能研究及其临床应用;昆虫初级免疫系统成分的分离;结构与功能研究及其临床应用;线虫杀虫成分的分离、结构、功能研究及其生物防治应用;抗菌多肽多样性的生物学意义研究;动物毒素结构与功能研究。联系方式: 025-84396849(tel) 025-84396671(Fax) lairen72@yahoo.com.cn...
  • 哪些食物含有抗菌肽?哪些食物含有螺旋藻?
    答:关键词:昆虫抗菌肽;结构;抗菌机理;应用 抗菌肽是生物体内经诱导产生的一种具有生物活性的小分子多肽,分子量在2000~7000左右,由20~60个氨基酸残基组成,这类活性多肽多数具有强碱性、热稳定性以及广谱抗菌等特点,现已在昆虫、鸟类、动物、植物及原核生物中发现600多种。 1 昆虫抗菌肽概述 昆虫数量多、分布广,具有...
  • 有谁知道生物活性肽的药理作用?
    答:生物活性肽是蛋白质中20个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线形、环行结构的不同肽类的总称,是源于蛋白质的多功能最复杂的化合物。活性肽具有人体代谢和生理调节功能,易消化吸收,有促进免疫、激素、酶抑制剂、抗菌、抗病毒、降血脂等作用,食用安全性及高,是当前国际食品界最热门的研究课题和...
  • 抗菌肽能长期使用吗?
    答:因此,如何提高抗菌肽的生产效率,降低成本,是应用抗菌肽必须解决的问题。其次,与传统抗生素相比,昆虫抗菌肽的抗菌活性还不够理想。改造已有抗菌肽和设计新抗菌肽分子是创造高活力抗菌肽的有效途径。这就需要进一步研究抗菌肽结构与活性的关系和作用机理,为抗菌肽分子的改造和设计提供足够的理论依据。
  • 肽详细资料大全
    答:一个胺基酸不能称为肽,也不能合成肽,必须是两个或两个以上胺基酸以肽键相连的化合物。两个胺基酸以肽键相连的化合物称为二肽;三个胺基酸以肽键相连的化合物称为三肽,以此类推,三十四个胺基酸以肽键相连的化合物称为三十四肽。 三、是涉及生物体内多种细胞功能的生物活性物质。截止2003年9月,生物体内已发现几...
  • 肽的功效与作用是什么?
    答:1、它可以排除体内毒素,全面均衡的补充细胞营养、调理全身八大系统、提高人体自身免疫力、解除现代人形成疾病的因素,从而使人们恢复健康的体魄。2、易消化吸收 蛋白质经肠蛋白酶消化成肽后,在小肠内由胰酶、糜蛋白酶完全水解,最后以氨基酸的形式被人体吸收,而肽可由肠道不经降解被直接吸收,吸收速度和...