光速怎么会不变呢?真不可思议!

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-07-24
光速如何不变?

倒相对论 倒相对论指的是一些人提出的,反驳相对论的理论。研究倒相对论的人被称为“倒相对论者”。他们认为相对论是错误的,并且严重阻碍社会发展,并希望推翻它。到目前为止,倒相对论研究结论还没有被普遍承认。
不同的倒相对论者的观点不一定相同,他们所反对的角度也不大相同,不过我发现,在维护相对论的人中,同样也会出现与爱因斯坦相对论不同的观点,所以不能简单的以其本人声称是维护相对论、修正相对论或倒相对论来区分,重要的是看其论据是否充分,结论是否正确。
倒相对论一般有如下几个方面:
推翻光的波粒二象性,即证明光只是波,或光只是粒子
推翻光速不变定律,即证明存在以太或存在绝对坐标
证明牛顿理论的正确性
下面将我收集和整理的与爱因斯坦相对论不同的观点展示:
先明确一下科学和物理学的定义:
科学是对一定条件下物质变化规律的总结。
(最早科学的定义是:分科的学问,指欧洲按数学、物理、化学、生物等分类的研究方法,已经与现在广泛理解的科学不同)
1888年,达尔文曾给科学下过一个定义:“科学就是整理事实,从中发现规律,做出结论”
科学必须是能够达成公认、可验证、可证伪。
公认,是指交谈双方认可的,不是虚指。
例如:8大行星说法的公认,是指科学大会通过决议,而不是地球上大多数人知道,后一标准是不容易验证的。
迷信是不希望听者去验证,只希望听者接受讲述观点的传播形式。
不经验证的接受方式,也是迷信。
迷信不一定是错的,每个人都不是全才,都会或多或少的迷信权威、专家,不经验证而相信,而大多数时候,专家的意见是正确的。
但是科学家也有错的时候:例如亚里士多德,是他那个时代最伟大的科学家,但是他的重物先落说被发现需要修正。
(注意:因为石头和羽毛实验可以证实一个规律,所以不能说他的理论完全错)
修正后的论述:在做自由落体实验时,如果两物体受到相同的、与运动方向相反的空气阻力,其它条件完全相同,则较重的物体先落地。
(注意:原结论重物先落证伪的最好实验不是两个不同重量的球做实验,而是带降落伞的人和石头比,石头先落)
按照这个定义出发,我们可以知道:弦理论、11维空间理论、黑洞理论、光在真空中固定速度为C,都是未经证实的理论,不是科学结论。
科学家的定义是:发表一些独到的科学见解,并得到大部分科学研究人员认可的人,或得到权威科学研究机构认可的人。(科学家本是尊称无需准确定义)
物理学是智慧生物之间描述无生命物质运动变化规律的科学。
爱因斯坦自己的理解,速度无穷大,“绝对同时”有意义,但观测速度上限是光速,因此“绝对同时”无意义。
对思维速度可以无穷大的人,“绝对同时”有意义。对思维速度不能超过光速的人,此类问题无意义。
牛顿时空观认为距离和时间,在各个参照系测得的都相同,因此光速是相对的,可变的,而不是绝对的。
首先我们定义1光秒的含义:光在某种稳定介质中一秒所运动的距离。介质可以是水,这个长度是2.25*10^8米,介质可以是玻璃,这个长度是2.0*10^8米,甚至可以是声音一秒的运动距离,介质是空气,这个长度是340米,还可以是报道过的试验,在某种介质中,光速是17米/秒,在这种介质中1光秒长度为17米,这都不影响下面的论述。
假设有一个1光秒长的玻璃,我们从起点A发出光,一秒时到达B,我们说测得光速1光秒/秒,多次试验结果不变。现在我们处于一个以1米/秒相对玻璃运动的参照系,方向与光相同,一秒时,我们距离B为1光秒-1米,我们在这个参照系测得光运动的距离是1光秒-1米,光速是(1光秒-1)/秒。光速是相对的,这是牛顿时空观结果,速度是相对的,是以变化距离除以时间得到。我们在学习相对论之前,全是用的这种算法,例如A车对地面车速50公里每小时,B车30公里/小时,A相对于B的车速为50-30=20公里每小时。
所以说相对论必须假设光速不变才能推导,而在牛顿时空观中,是不能被证明光速不变的。很多人以为爱因斯坦相对论可以离开光速不变假设,这是不对的。爱因斯坦为了保证光速不变,需要修改长度(尺缩),时间(钟慢),就是认为运动的参照系测得的时间,与静止参照系不同,这已经是与牛顿理论完全不同了,而不是兼容关系。连中国大学教材都在相对论假设中增加了“真空中”,变为:在彼此作匀速运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
爱因斯坦相对论理由1:19世纪末在光的电磁理论发展过程中,有人认为宇宙间充满以太,光是靠以太传播的。而迈克耳孙和莫雷实验证实,上述以太是不存在的。
此理论的提出是因为观测光从木星卫星到地球,速度大致相等,而无论地球向卫星运动还是背向卫星运动。小学我们就知道计算相遇时间,当相向时,是速度相加t=L/(v1+v2),反相时是速度相减t=L(v1-v2),只有v1大于v2才能追上。因此有人提出光是波,波的运动靠介质,而太空中是真空,所以必须假设存在一种在真空中也存在的物质作为光的介质,所以以太这种光介质被假设出来。由于地球没有特殊性,所以以太是独立于地球运动的。
当时的人不知道真空中光速和空气中的光速不同,而现在已经成为共识,那么如果光在宇宙间是用真空速度运动,到了地球表面就按大气中的速度运动了,这种假设实验是否否定了呢?有理论认为真空是相对的,地球并不是一个理想球体,外包球型大气,地球大气与星际是没有明显分界的,是逐渐稀薄的太空中的“真空”对光来说还不能称为“真空”,那么地球在距木星卫星相等距离时,两星间气体总量大致相等,光传播需要相等时间就不奇怪了,而无论地球向卫星运动还是背向卫星运动,光是波,运动只和介质相关,这样假设,以前认为的以太就没有必要了,所以以太不存在的解释,并非只有相对论一种。莫雷实验也不能否定这种假设,因此它不能作为推导相对论时空观的充分证据。
爱因斯坦相对论理由2:1964年到1966年,欧洲核子中心实验结果:一种粒子以0.99975c的高速飞行,辐射出的光子,实验室速度仍是C。
实验仅能证明,在稳定的空气中,光速不变。而不能引申为相对任何参照系光速不变,因为这个实验中我们没有改变参照系。
爱因斯坦相对论理由3:洛伦兹变换:
因为书中的P事件对Y、Z轴有分量,光速要考虑球型,与书上结论不同(是错,但不是论述重点),因此为简单起见,假设P事件发生在X轴上。
O和O1两个坐标系,O坐标系相对于P事件静止,O1坐标系向P事件以V运动,P事件发生时,O与O1原点重合。
在O坐标系看来P事件发生在T时刻,位置是X,O1坐标系看来P事件发生在T1时刻,位置是X1。
X=X1+VT1
X1=X-VT
变换如下:
X=K(X1+VT1) (1式)
X1=K1(X-VT)
O与O1等价因此K=K1
X1=K(X-VT) (2式)
X=CT , X1=CT1 (3式)
1、2式相乘带入3式
XX1=K**2(X-VT)(X1+VT1)
K= 1 / (1-(V/C)**2)**(1/2)
看不出问题吧?
下面来举个简单的例子,
假定P事件发生在3光秒处,O系得到记录,3秒时看到P事件发生在3光秒处,O1系以0.5倍光速向P移动,得到记录,2秒时P事件发生在2光秒处(2秒O1系移近P事件1光秒)。
X=X1+VT1 == 3=2+0.5*2
X1=X-VT == 2=3-0.5*3 ???
这个3秒怎么来的?在O系看P事件是在3秒时发生的!如果是2秒,则需要承认两个参照系测得的时间相同,是绝对的,而不是相对的。
引入常数K进行变换
强行变换的结果是从O系看来以为P事件在O1系的速度、时间和距离。
这个结果可能被物理实验家所证实。因为他们始终站在O系观测实验。
爱因斯坦相对论理由4:一运动列车,列车中间一个光信号接收器,地面一个光信号接收器,当车上车下两个接收器重合时,车头和车尾各自发出一个闪光,地面接收器同时收到信号,而光传播是需要时间的,在这段时间内,车又向前运动了,因此列车中间的接收器先接收到车头的光,后接收到车尾光,结论:不同事件的同时性不是绝对的,只是相对概念。
相对论是以光速不变做为前提的,与参照系无关,因此才不用说光源是相对地面静止,还是相对列车静止,列车中间的接收器由于到头尾距离相等,因此按相对论也应该同时收到光信号。
我们认为本例的条件不全:
1 火车内的空气对火车静止,火车外的空气对地面静止,火车长度为光在空气中需要T秒通过,闪电发生时作为时间原点,两相对匀速运动的参照系可以建立相同的时间。结果:T/2秒,地面接收器与火车中接收器同时收到两端信号,符合相对论变换和伽利略变换,光速不变,与参照系无关。
2 火车内空气对地面静止(无厚度平板),火车速度为V。结果:地面接收器T/2秒同时收到两端信号,火车中(TC/2)/(C+V)秒收到车头信号,(TC/2)(C-V)秒收到车尾信号,符合速度叠加原理。
用声音代替光,可以做出这两个结果,而论述中为什么要选择违反相对论假设的一个结果呢?
爱因斯坦相对论理由5:用车上人描述物体下落过程是直线,车下人描述物体下落过程是曲线来说明物体运动描述的相对性。
这是不对的。只要知道车速,车上人可以计算出车下人应该看到何种曲线,车下人也可以算出车上观测物体是否直线。
爱因斯坦相对论理由6:物理学定律在一切惯性参考系中都具有相同的数学表达形式。
这个叙述不严谨。一个相对地球做匀速直线运动的火车,可以近似看做一个惯性参考系,那么在火车上放氢气球与地面上放氢气球,运动轨迹不可能等价,根本不能用一个系数使其等价。在什么情况下才能认为等价呢?当空气作为静止参照系,地表静止物与火车相对空气做等速运动时等价。这时在空气参照系看两个氢气球都是直线上上升,两个运动参照系各自描述的上升斜率一致,有相同的数学表达形式。或者当空气相对地表静止时,火车对氢气球运动的描述,与空气对火车静止,地面对氢气球运动的描述等价。(介质相关性)
爱因斯坦相对论理由7:光在真空中的速度相等。(这个在相对论原文中是不存在的,应该是后人理解后添加的)
这一点我们不反对,它符合牛顿定律,但是从其它波的规律可知,任何波的传递,都需要介质,在达到一定的真空度时,波都无法传递,因此理论上光的传递也需要介质,我们还不能阻止光传递是因为我们还不能制造让光不能传递的真空度。光在真空中,速度也应该为0。如果真空中光速真是0,则构成洛伦兹变换推导错误的又一论据,因为等式两边同除以光速。
爱因斯坦相对论理由8:声音无法在真空中传播,光可以在星际空间传播
真空也是有相对性的,在真空中声音不能传播试验中,我们用助听器增强接收能力,或者提高放音的功率,又可以听到声音了。说明真空并没有阻挡传播,而是传播的能量不足以被接收者识别!这个现象我们也可以用光做,在一个较长距离内,低功率的光不能被接收,高功率的光能够被接收。甚至可以预言,可以被接收的微光,在介质被抽真空后,变得无法接收。
爱因斯坦相对论理由9:“光子”能量是一份份的,且具有动量,因此光是粒子。
由于声音能量,需要介质传递,当真空度降低的时候,需要有粒子过来,才能传递声能,没有粒子过来,就没有声能过来,因此试验中,声音能量也是一份份传递的。声音也具有动量,可没人承认“声子”是粒子。
爱因斯坦相对论理由10:“光子”经过太阳,光线弯曲
在光有粒子性这一点上,爱因斯坦与牛顿是一致的。但是光的波动说也能解释这个弯曲,而不需要假设光是粒子!我们知道光在经过密度不同的空气时会产生折射,最常见的现象是在阳光强烈的时候,远处公路路面象有水一样。太阳周围的大气,密度也是不均匀的,也会产生折射。
爱因斯坦相对论理由11:速度接近光速,质量无限增加。有实验将粒子加速到接近光速,确实发现质量增加现象。
也有实验将粒子加速到超过一种介质中的光速,发现在突破光速的时候,也有类似超过声速时会发生的声障现象,他们称之为光障,必须克服光障的阻力,才能突破光速。联系两个实验,是否前一个实验错误的把光障阻力,当成质量增加?有待进一步核实。
爱因斯坦相对论双生子悖论:
两个相同飞船,各坐双生子中的一个,两飞船匀速直线远去,按相对论,动钟变慢,两人得出相反结论:对方在动,钟比自己慢。当两个飞船以同样加速度调转方向,变远离为靠近,到相遇时两钟应相同,而不是根据任何一个的相对论观点,对方的钟慢。这个结论即使用广义相对论解释,也应一致。
如果结论是相同,除了得出相对论动钟慢结论是观测效果,还能如何解释?
爱因斯坦相对论子杀父悖论:
按照爱因斯坦相对论结论,超过光速时间倒流,孩子可以回到出生前杀死父亲,则由于父亲已死,不会再生孩子,孩子则不会杀死父亲,父亲就不会死,也就会生孩子。这是个逻辑悖论。而修正后的相对论认为相对论效应只是观测效应,则不存在这个问题。
其它问题
由于重力等效加速度,加速度大时间慢。因此应该定义特定加速度的条件下的铯钟才是标准的。就象以前理解热胀冷缩,并没有认为热的时候空间变大一样。在高空飞行时,重力加速度对钟的影响,远大于相对论效应,也就是说,我们根据试验而不是理论计算出来的重力影响,完全可以淹没相对论效应,说相对论效应存在与不存在,只要在重力关系中进行调整,完全不存在理论问题。所以相对论效应在这个条件下是不能被证明的。
用声速测量接近声速运动的物理现象,其理论推导同相对论完全相同,也可以得到同相对论同样的结果,仅是用声速替换了光速。前提条件:声音介质中声音传播的速度不变。也有类似的钟慢尺缩现象。
在任意一种均匀稳定静止介质中传播的波,相对介质波速不变。
波速的计算方法为:波源发出波到接收器收到波的距离和时间之商。与波源发出波后的运动无关。
环球铯钟实验:以静止在实验室里的原子钟为标准,让一个原子钟绕地球一周,再与实验室里的原子钟比较。实验详情见:http://club.it.sohu.com/read-kpyd-8849-0-14.html
作者用一些相对论公式拟合了结果,结论是:"这表明,狭义相对论的时间膨胀效应只有在惯性系中才能给出正确的预言"。就是说本实验不能证明狭义相对论的时间膨胀效应。
某种粒子高速时比静止时寿命长:粒子在运动过程中受到的撞击比静止时高出许多,为什么不能是撞击影响?静止的粒子,不断用空气分子撞击,寿命也应延长。
修正后的理论对超距作用,也能解释。超距作用:处于纠缠态的两个粒子,自旋态一致,将其中一个改变,另一个几乎“同时”改变,而不管它们相距多远,人们还没有测出信号传递的速度,但肯定比光速快。
另有报道,一爆炸星体的两部分,以9.6倍光速远离。如果测量方法没有问题,那么爱因斯坦的相对论必须补充限制条件,以说明在这种情况下不适用,而修正的相对论则不必修改。
相对论的限制条件和可扩展性
爱因斯坦提出两条假设:
1物理定律在一切惯性参考系中都具有相同的数学表达形式。
问题:一辆地面上匀速运动的车上,从车顶,自由掉下一个物体,车上的人,与车下的人所观测到的运动轨迹不是相同的数学表达形式。不能用系数简单的统一。
2光速不变原理,在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
问题:人类没有得到过物理意义上的真空,结论先不争论。是否有更普遍的适用范围?
修正如下:
1物理学定律在相同的条件下重复实验,具有相同的数学表达形式。可以通过坐标变换进行不同参照系间的转换。
2在均匀稳定的介质中,任何波的运动速度都相同。换句话说,任何波的运动速度,仅与介质相关,而与波源发出波后的运动无关。
这两个假设其实是公理,不会有人反对,也就不用假设。
相对论变换与伽利略变换是兼容的,与速度叠加是谐变的,不是对立关系。运动的火车头发出的声音,相对地面静止的空气来说,声速不变,符合相对论变换;相对火车头是速度叠加,是声速减车速。超音速飞机内部的声音,相对飞机还是声速,类似于光速火箭发出的光,对火箭还是光速,符合相对论变换和伽利略变换;相对地面速度是声速与飞机速度的合成,符合速度叠加。如果我们忽略介质,则得到哪种变换结果,都是可能的,这是爱因斯坦相对论没有讲清楚,而且非常迷惑人的原因。
光学畸变(假设在一定条件下光速稳定为C,这个现象具有普遍性,用声音实验可以得到同样结论)
如果一个钟,以0.5倍光速从原点远去,我们会看到什么现象呢?
一秒钟时,它距离原点0.5光秒距离,但这个事件我们在原点看见,需要再过0.5秒,于是我们发现,在本地钟1.5秒时,远处的钟在0.5光秒处。计算得知0.5/1.5=1/3光速,也就是我们测量到钟在以1/3光速前进。两秒钟时远处的钟在1光秒处,我们看到是在3秒时。也是1/3光速。
于是我们认为钟是以1/3光速匀速运动的,好象钟慢。
理想点以a倍光速远去,1秒钟远离a*C(光速)距离,在计时起位置要a秒传过来,到达a*C的事件将在a+1秒传到观察者,观察者认为速度为a*C/(1+a),速度永远小于光速。a为1时看到以1/2C远离。
理想点以a倍(a小于1)光速靠近,计时位置要x秒传过来,1秒后位置要x+1-a秒传过来,观察者认为速度为a/(1-a),快于光速。
理想点以光速接近,观察者突然看到它和它以前所有影像。
理想点以a倍(a大于1)光速接近,观察者先看到近端形象,后看到远端形象,以为远离。近处形象要x秒传过来,1秒前形象要1+x+a秒速度为a/1+a,速度越大越接近光速远离。
一条理想尺子,每0.1光秒处有一个刻度,一条静止线段,长0.1光秒,我们观察到线段与尺子重合,长度为0.1光秒。线段离我们远去,1秒后,到达尺子0.1至0.2光秒刻度处,可我们在0.1秒后才观察到近端到达0.1光秒刻度处,0.2秒后才看到远端到达0.2光秒刻度处,就是在1.1秒时我们看到近端到达0.1光秒刻度时,远端还在向0.2光秒刻度处运动,线段短了,好象尺缩短。1秒后线段停了,我们看到1.1秒时近端不动了,线段远端在1.1秒到1.2秒时继续运动,1.2秒后到达0.2光秒处。
线段在涨长!
同理,向我们运动时线段会变长。线段并没有变,是人的观测结果变了。
超过声速我们将追上钟以前发出的声音,也就是先听到钟敲3下,报3点,再听到钟敲2下,报2点,然后听到钟敲1下,报1点,这就是超过声速时间倒流现象!
这就是著名的钟慢尺缩、超过光速时间倒流效应原理,爱因斯坦在其相对论论文中,从未提及这个效应,应该是爱因斯坦忽略了这个问题。我们认为,这个才是真正意义上的相对论,具有限制条件,在条件内,很多速度都有运动的相对论效应。
有人说这是在牛顿时空观没跳出来,没学懂相对论,但是要注意“懂”是相对的,在本文爱因斯坦相对论论述中,哪里有错误?本论述连牛顿的光粒子说一起否,是盲从牛顿应有的表现吗?而本文提出的问题,谁又考虑过?这些问题都不知道,就是相对本文作者属于“无知”,盲目相信爱因斯坦或大学教材就是“迷信”,科学一直在发展,光的粒子说、波动说几次交换主导地位的历史表明,新的学说有可能支持旧的观点,但那不是退步,而是进步。
结论
综上所述,相对论入门中的例子,每个都值得怀疑,更为可信的结论是:相对论主要结果是光速观测结果,不等于物理本质,因此它并不是错误的,也是可以通过实验证实的,但它不能准确描述物理本质,是有待完善的理论,爱因斯坦只是列错了算式;波粒二相性是波传递必须依靠的介质中的粒子表现出来的,因此光也是普通的波,与其它波没有本质区别。按照修正后的相对论,与所有其它体系兼容,且不存在悖论,有关相对论的争议,完全可以平息。
伽利略相对性原理:
一切彼此做匀速直线运动的惯性系,对于描写机械运动的力学规律来说是完全等价的。并不存在一个比其它惯性系更为优越的惯性系。在一个惯性系内部所作的任何力学实验都不能够确定这一惯性系本身是在静止状态,还是在作匀速直线运动。
本文论述的观点,是在经典理论框架内,对经典理论未考虑的测量速度问题加以分析,与爱因斯坦思考近光速运动产生的现象一样的思路思考下去,从而得出普适相对论,能够指出爱因斯坦相对论对经典理论的误解,既不需要额外假设,也不需要建立额外复杂模型,而且能够解释爱因斯坦相对论现象,使得实验结果与经典理论完美结合。这种观点仅需要修改爱因斯坦相对论计算公式,就可以成为一种普适相对论,适用于用任何波速,测量运动物体速度的问题。爱因斯坦相对论只不过是其中的一种“光速相对论”而已。科学已经进步,不要再停留在爱因斯坦的时空观,带着所有解释不了的漏洞继续迷信爱因斯坦相对论,他考虑的太不全面。这种观点是兼容经典理论和爱因斯坦相对论的,所有实验结果都可以包容进来,显然比爱因斯坦相对论更具有普适性。

光速
开放分类: 物理学、相对论、折射定律

光速定义值:c=299792458m/s
光速计算值:c=(299792.50±0.10)km/s
英文:speed of light/ velocity of light
定义:光波或电磁波在真空或介质中的传播速度,没有任何物体或信息运动的速度可以超过光速。
理论
人无论靠什么推进器,速度都是无法达到光速的,更不要说超光速了。因为,有质量的物体的运动速度是不可能达到光速的。原理如下:
首先,我们来了解一下质能等价理论。质能等价理论是爱因斯坦狭义相对论的最重要的推论,即著名的方程式E=mC^2,式(质能方程)中为E能量,单位电子伏特(eV),m为质量,单位MeV/c^2 ,C为光速;也就是说,一切物质都潜藏着质量乘于光速平方的能量。
一个静止的物体,其全部的能量都包含在静止的质量中。一旦运动,就要产生动能。由于质量和能量等价,运动中所具有的能量应加到质量上,也就是说,运动的物体的质量会增加。当物体的运动速度远低于光速时,增加的质量微乎其微,如速度达到光速的0.1时,质量只增加0.5%。但随着速度接近光速,其增加的质量就显著了。如速度达到光速的0.9时,其质量增加了一倍多。这时,物体继续加速就需要更多的能量。当速度趋近光速时,质量随着速度的增加而直线上升,速度无限接近光速时,质量趋向于无限大,需要无限多的能量。因此,任何物体的运动速度不可能达到光速,只有质量为零的粒子才可以以光速运动,如光子。

若考虑微观状态(量子力学),有可能超过光速。
黑洞的存在于光速没有关系,黑洞是由于引力场使空间弯曲造成的,不会影响光速 。
真空中的光速是一个物理常数(符号是c),等于299,792,458米/秒。

光速的测量方法: 最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。
1983年,光速取代了保存在巴黎国际计量局的铂制米原器被选作定义“米”的标准,并且约定光速严格等于299,792,458米/秒,此数值与当时的米的定义和秒的定义一致。后来,随着实验精度的不断提高,光速的数值有所改变,米被定义为1/299,792,458秒内光通过的路程。
根据现代物理学,所有电磁波,包括可见光,在真空中的速度是常数,即是光速。强相互作用、电磁作用、弱相互作用传播的速度都是光速,根据广义相对论,万有引力传播的速度也是光速,且已于2003年得以证实。根据电磁学的定律,发放电磁波的物件的速度不会影响电磁波的速度。结合相对性原则,观察者的参考坐标和发放光波的物件的速度不会影响被测量的光速,但会影响波长而产生红移、蓝移。这是狭义相对论的基础。相对论探讨的是光速而不是光,就算光被稍微减慢,也不会影响狭义相对论。
一、光速测定的天文学方法
1.罗默的卫星蚀法
光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s.
2.布莱德雷的光行差法
1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:C=299930千米/秒
这一数值与实际值比较接近.
以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.
二、光速测定的大地测量方法
光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法.
1.伽利略测定光速的方法
物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为c=2s/t
因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度.
2.旋转齿轮法
用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.
在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为

在这一时间内,光所经过的光程为2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).
在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=299776±6km/s,1951年贝格斯格兰又用克尔盒法测得c=299793.1±0.3km/s.
3.旋转镜法
旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在1834年1838年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上,M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值。式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速。
在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v<c,这是对波动说的有力证据.
3.旋转棱镜法
迈克耳逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动.1926年他的最后一个光速测定值为
c=299796km/s
这是当时最精确的测定值,很快成为当时光速的公认值.
三、光速测定的实验室方法(高中课本有)
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法(大学课本)
1790年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
接近光速时的速度合成
接近光速情况下,笛卡尔坐标系不再适用。同样测量光线离开自己的速度,一个快速追光的人与一个静止的人会测得相同的速度(光速)。这与日常生活中对速度的概念有异。两车以50km/h的速度迎面飞驰,司机会感觉对方的车以50 + 50 = 100km/h行驶,即与自己静止而对方以100km/h迎面驶来的情况无异。但当速度接近光速时,实验证明简单加法计算速度不再奏效。当两飞船以90%光速的速度(对第三者来说)迎面飞行时,船上的人不会感觉对方的飞船以90%c+90%c=180%c光速速度迎面飞来,而只是以稍低于99.5%的光速速度行驶。结果可从爱因斯坦计算速度的算式得出:
v和w是对第三者来说飞船的速度,u是感受的速度,c是光速。
不同介质中的光速
真空中的光速 真空中的光速是一个重要的物理常量,国际公认值为c=299,792,458米/秒。17世纪前人们以为光速为无限大,意大利物理学家G.伽利略曾对此提出怀疑,并试图通过实验来检验,但因过于粗糙而未获成功。1676年,丹麦天文学家O.C.罗默利用木星卫星的星蚀时间变化证实光是以有限速度传播的。1727年,英国天文学家J.布拉得雷利用恒星光行差现象估算出光速值为c=303000千米/秒。
1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想用旋转镜法测得光速为c=(298000±500)千米/秒。19世纪中叶J.C.麦克斯韦建立了电磁场理论,他根据电磁波动方程曾指出,电磁波在真空中的传播速度等于静电单位电量与电磁单位电量的比值,只要在实验上分别用这两种单位测量同一电量(或电流),就可算出电磁波的波速。1856年,R.科尔劳施和W.韦伯完成了有关测量,麦克斯韦根据他们的数据计算出电磁波在真空中的波速值为3.1074×105千米/秒,此值与菲佐的结果十分接近,这对人们确认光是电磁波起过很大作用。
1926年,美国物理学家A.A.迈克耳孙改进了傅科的实验,测得c=(299796±4)千米/秒,他于1929年在真空中重做了此实验,测得c=299774千米/秒。后来有人用光开关(克尔盒)代替齿轮转动以改进菲佐的实验,其精度比旋转镜法提高了两个数量级。1952年,英国实验物理学家K.D.费罗姆用微波干涉仪法测量光速,得c=(299792.50±0.10)千米/秒。此值于1957年被推荐为国际推荐值使用,直至1973年。
1972年,美国的K.M.埃文森等人直接测量激光频率ν和真空中的波长λ,按公式c=νλ算得c=(299792458±1.2)米/秒。1975年第15届国际计量大会确认上述光速值作为国际推荐值使用。1983年17届国际计量大会通过了米的新定义,在这定义中光速c=299792458米/秒为规定值,而长度单位米由这个规定值定义。既然真空中的光速已成为定义值,以后就不需对光速进行任何测量了。
介质中的光速 不同介质中有不同的光速值。1850年菲佐用齿轮法测定了光在水中的速度,证明水中光速小于空气中的光速。几乎在同时,傅科用旋转镜法也测量了水中的光速(3/4c),得到了同样结论。这一实验结果与光的波粒二象性相一致而与牛顿的微粒说相矛盾(解释光的折射定律时),这对光的波动本性的确立在历史上曾起过重要作用。1851年,菲佐用干涉法测量了运动介质中的光速,证实了A.-J.菲涅耳的曳引公式。 [玻璃中光速2/3c]

光在水中的速度:2.25×10^8m/s
光在玻璃中的速度:2.0×10^8m/s
光在冰中的速度:2.30×10^8m/s
光在空气中的速度:3.0×10^8m/s
光在酒精中的速度:2.2×10^8m/s

上述理论只在19世纪70年代基本准确,在爱因斯坦>中,光速是这样阐述的:物体运动接近光速时,时间变得缓慢,当物体运动等于光速时,时间静止,当物体运动超过光速时,时间倒流.这三个推断是19世纪70年代初中期国际天文机构观察探测日食时得以证实,而目前得以证实人类超过光速的机器是俄罗斯时间机器,它可以使当地时间倒退一秒,而耗电量是整个莫斯科市三年的用电量.

爱因斯坦1905年9月发表在德国《物理学年鉴》上的那篇著名的相对论论文《论动体的电动力学》,提到光速问题的话有四段:

“光在空虚空间里总是以一确定的速度V传播着,这速度同发射体的运动状态无关。”

“下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义如下:

1. 物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是两个在互相匀速平行移动着的坐标系中的哪一个并无关系。

2. 任何光线在‘静止的’坐标系中都是以确定的速度V运动着,不管这道光线是由静止的还是运动的物体发射出来的。”

“对于大于光速的速度,我们的讨论就变得毫无疑义了;在以后的讨论中,我们会发现,光速在我们的物理理论中扮演着无限大速度的角色。”

“由此,当υ=V时,W就变成无限大。正像我们以前的结果一样,超光速的速度没有存在的可能。”
(《爱因斯坦奇迹年━━改变物理学面貌的五篇论文》[美] 约翰•施塔赫尔主编,范岱年、许良英译,上海科技教育出版社2001年版 第97━98页,第100━101页,第109页,第127页。)

光速不变第四解为质速解,此解从质速关系得来。爱因斯坦质速关系式:
m=m0/√1-υ2/c2(m为运动质量,m0为静止质量,υ为物体运动速度,c为光速)说明:物体以远低于光速的速度(人体尺度下)运动时,质量变化不明显,增加的质量忽略不计,可认为质量不变,以经典力学规律足可以应付计算需要。但接近光速运动时,物体质量增加较多,随着向光速的靠近,质量趋向无限大。大小两极相通,质量无限大因两极同一又为无限小,质量无限小可视为零,因此光子无静止质量。光作为极限物,大小同一,动静也同一,无静止质量即为无运动质量。从质速关系式也可得m0=0时,m=0,υ=c时,此公式不成立。有人认为没有质量怎会有能量?须知电磁场为能量场,光量子又是能量子,因光子无质量,任一能量值在与质量对比时都为无限大,因无质量,运动中也不消耗能量,除传递能量给其它物体外,光子能量足以保持其速度不变。
光子无质量为知性所不容,人们到处寻找有质量的根据。有人认为光有光压为有质量表现,但不知光压乃光电效应表现,是光量子、光能转化为电能的表现。也有人引爱因斯坦质能公式:E=mc2(E为能量,m为惯性质量,c为光速),认为有质量才有能量,这就和前述质速公式冲突,这种冲突说明光作为极限物,独立于两式之外。我们根据另一能量公式:E=hν(E为能量、n为普朗克常数、ν为光频率)可计算出一定频率光之光子能量,使m=hν/c2推导光子潜质量。注意,这里指的是一定能量必对应一定质量,但对光子而言这只是其潜在质量而非实在质量,这就是实验中找不到有质量的光子的原因,潜在质量只说明可以转变为多少质量。如按经典力学观点非认定光有质量,电磁场有质量,真空作为光量子场就要表现出巨大质量,一切有光的场所也会有沉重的质量压力,含有电磁场的粒子质量都需加倍, 引力定律还会使真空形变。推理继续,光越强,质量越大,引力越大,恒星都变成了黑洞,岂不荒谬!电磁场为能量场,引力场为质量场,二者进一步同一才将潜在的质能关系扬弃为真实关系,这却不是本篇所论之题。还有人以光线在引力场中弯曲来证光有质量,有质量的东西才受引力吸引。我们知道,能量为斥力,不受引力作用影响,至于为何会弯曲,以后自会了解。电磁场有能量而无质量,引力场有质量而无能量,实物处二者间而兼有之,我们需再走一段才能真正了解它们。

光速不变的第五解为时空解,时空解源自爱因斯坦相对论。相对论告诉我们,物体高速运动时会发生“尺短钟慢”的现象,这种现象在低速运动中变化极小,可按牛顿力学定律视其无变化,但在高速中变化明显。如沿运动方向取1米的标尺,以地球时间1秒计算,每秒速度在3万公里时,1米为0.995米,1秒为1.01秒;在15万公里时,1米为0.866米,1秒为1.15秒;在29.7万公里时,1米为0.141米,1秒为7.1秒;在29.99万公里时,1米为0.02米,1秒为50秒。当物体运动速度达到光速时,物体沿空间方向的尺度会缩短为零,时间会慢到停止。

υ(公里/秒)
ι0(米)
ι(米)
t 0(秒)
t(秒)

0.1c=3万
1
0.995
1
1.01

0.5c=15万
1
0.866
1
1.15

0.9c=27万
1
0.436
1
2.29

0.99c=29.7万
1
0.141
1
7.1

0.9998c=29.99万
1
0.02
1
50

C=29.9792 458万
1
0
1
0

“尺短钟慢”效应说明空间和时间是随物质运动速度的变化而变化的,它适用于一切物质,包括光。光速下,时钟停摆,零时间意味着光在传播过程中不消耗时间。空间是物质的延展性,时间是物质变化的连续性或延展性。没有时间就意味着物质静止不变,保持原状,所以光速不变。零时空虽是合理推论,是自然现象、自然法则,也为知性形而上学所不容。更有一部分人认为运动是绝对的,静止时相对的,不但把运动与静止相割裂和对立,且把本应一并使用的对应范畴——相对与绝对分赠不同事物,在形而上学中也沦落到低层次。

辩证法认为有无同一。零时空并不意味着真的一无所有,而是说我们无法测量这时空。无数光量子溶为一体,共同构成大统一场,不分彼此,此光即彼光,因为你无法分离出单个的光量子,你也就无法给定某个量子以特定的空间和时间。这一现象与经济学中全民所有疑难类同:生产资料归全体人民所有,每个人都拥有生产资料,这只是象征性的;每个人又不拥有生产资料,这是实际性的,无法确定哪些生产资料是某个人的,结果无产阶级仍是无产阶级。世风日下情况下,私心膨胀,就变成你的也是我的,不拿白不拿,大家都拿,拿大家的。

人类生活领域比起这宇宙来,渺如尘沙,不值一提。人长期生存于人体尺度领域中,其生活经验及认识局限于此,这个世界的两极——极大和极小都在我们世界之外。如果不是近代人类面临生存危机,迫使我们跨入两极神秘之域,寻求新的生存空间,我们将永不能理解老子及黑格尔的辩证思想。

光速不变原理,在狭义相对论中,指的是无论在何种惯性系(惯性参照系)中观察,光在真空中的传播速度都是一个常数,不随光源和观察者所在参考系的相对运动而改变。这个数值是299,792,458 米/秒。

光速不变原理是由联立求解麦克斯韦方程组得到的,并为迈克尔逊—莫雷实验所证实。光速不变原理是爱因斯坦创立狭义相对论的基本出发点之一。

在广义相对论中,由于所谓惯性参照系不再存在,爱因斯坦引入了广义相对性原理,即物理定律的形式在一切参考系都是不变的。这也使得光速不变原理可以应用到所有参考系中。

和难想象但是可以这样解释:
按照麦克斯韦的方程组, 电磁波在真空中的速度只和真空的电导率和介电常数有关。不像其他的波需要介质, 介质对不同的参考系会有不同的相对速度。 如果两个参考系观察到同一束光的速度不同了, 那就说在不同的参考系里的真空介电常数和电导率就会呈现不同的值,从而推广到任何物质的这两个参数都是和参考系有关的。但是这是肯定不对的, 这两个参数随参考系的变化可以推出对不同的参考系物理定律是完全不一样的荒谬结论。
因而光速只能是绝对的和参考系无关的量。

光速是变的
光的频率是不变的
而光在不同介质中的波长不一样
所以光在不同的介质中的传播速度是不一样的
比如光在玻璃里的传播速度约是真空的3/4

没有怎么会.实验现象就是这样.好像是叫迈克尔逊—莫雷实验吧.
而观察到这个现象我们就必须创造一个理论去解释这个现象,并利用这个理论去预测未来,这个理论就是相对论.

  • 光速无法被超越,其根本原因是什么?
    答:一、时间膨胀效应 光的速度为30万每秒,当我们在快速运动中带着一只钟表,你身上的表就静止的表时间要过的慢,假如你现在的运动速度为1万公里每秒,那么你身上的表就比静止的表慢了1/30秒,因为这个时间膨胀效应的存在,所以我们经常会说超光速能够让我们看到过去,其实你的时间变慢了,而别人的时间...
  • 为什么光速无法超越?
    答:光速 光速和时间在某种意义上是同一个东西。光子一秒30万公里,如果只跑了15万,那么其实不是光子变慢了,而是时间相对地球时间快了一倍。如果测量到光速降低到0,那你的时间甚至相对地球时间开始倒流了,此时,你就是光速了。虽然这有些不可思议,但实际确实是这样,这也是为什么再强大的粒子加速器都...
  • 光速为什么可以这么快?它的动力源是什么?
    答:虽然这有些不可思议,但实际确实是这样,这也是为什么再强大的粒子加速器都不能将一个粒子加速到光速的原因,因为粒子具备静止质量,而通过狭义相对论的质速公式,我们发现当一个具备静止质量的粒子,在接近光速时,它的质量会趋向于无穷,而无穷大的质量则需要无穷多的能量来进一步提速,显然宇宙中的能量是有限的(无限的也...
  • 光速真无法超越?宇宙才诞生138亿年,为何膨胀速度却反超光速?
    答:​ 提起世界上最快的速度,相信大多数人首先会想到光速,的确,光速恒定不变、光速无法被超越都是举世公认的真理,正因光速的这些性质,天文学家们才会选择用它衡量宇宙中天体之间的距离,也就是光前进一年的距离等于1光年,人类之所以接受光速最快是因为以此为基石,可解释绝大多数现象,不过神奇的...
  • 光速不变原理
    答:是的 这就是相对论的一个基本假设 它也是其他结论的基石 它的确不可思议,说实话我从初中就喜欢看相对论,不过当时看不懂……但是感觉到它内在的美 如果这些都符合现实中的感觉,又怎么能唯独成就了爱因斯坦的英名呢呵呵 所以学相对论的时候不能拘泥于平时的直觉啊 ...
  • 光速:竟然不是宇宙中最快的速度?
    答:光速是宇宙中最快的速度吗?1. 爱因斯坦的横空出世让人们第一次认识到光速的不可思议。2. 光速,即三十万公里每秒,为人类的科技水平和存在方式带来了巨变。3. 物质的运动速度达到光速时,几乎一切皆有可能,甚至可能实现穿梭时空,改变过去。4. 宇宙的膨胀速度却比光速更快,至少是光速的三倍以上。5...
  • 怎么会有超光速呢?不可思议!
    答:首先,任何物质的运动速度不会超过光速,铁原子之间的作用力实际上是一种电磁力,确切的说,铁原子受到的电磁力是铁原子在其他铁原子的电磁场中所受到的作用,也就是说原子之间是场相互作用,原子之间可以视为交换光子发生作用,是不能超越光速的。其次,即使铁棒有1光年长,它也不可能在一年的时间内像...
  • 光速每秒可绕地球7圈半,而中子星每秒可旋转700圈,中子星超光速了吗?
    答:但是,正是因为中子星的半径通常很小,与我们的地球相比,地球的平均半径是6371公里。根据角动量守恒原理,中子星继承了原始恒星的大部分角动量,由于体积小,中子星的转速通常很快,从每秒数百转到数千转不等。但是这个速度对于我们人类来说是一个非常不可思议的事实,因为我们的地球24小时只自转一次,...
  • 关于光速的提问
    答:光速不变这一事实本身就不可思议,不是么?相对论不是假定光速不可超越,而是证明了光速不可超越。这里的“相对”是指基于运动的相对性以及光速的绝对性推导出的一系列理论。它证明了时间空间(指我们在三维视角上感觉到的时间和空间)并不是一成不变的,而是与物质及其运动紧密相关的。“黑洞的引力...
  • 光速为什么可以这么快呢?它的动力源是什么呢?
    答:虽然这有些不可思议,但实际确实是这样,这也是为什么再强大的粒子加速器都不能将一个粒子加速到光速的原因,因为粒子具备静止质量,而通过狭义相对论的质速公式,我们发现当一个具备静止质量的粒子,在接近光速时,它的质量会趋向于无穷,而无穷大的质量则需要无穷多的能量来进一步提速,显然宇宙中的能量...