des和aes 加解密算法具体步骤?有例子最好

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-06-29
des算法加密解密的实现

一.加密

DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:



DES算法加密过程
对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换后,得到的比特串的下标列表如下:


IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串f1,f1与L0做不进位的二进制加法运算。运算规则为:

f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2…… 一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。

R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1后所得比特串的下标列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25


经过置换IP-1后生成的比特串就是密文e.。
下面再讲一下变换f(Ri-1,Ki)。
它的功能是将32比特的输入再转化为32比特的输出。其过程如图所示:


对f变换说明如下:输入Ri-1(32比特)经过变换E后,膨胀为48比特。膨胀后的比特串的下标列表如下:


E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31

膨胀后的比特串分为8组,每组6比特。各组经过各自的S盒后,又变为4比特(具体过程见后),合并后又成为32比特。该32比特经过P变换后,其下标列表如下:


P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

经过P变换后输出的比特串才是32比特的f (Ri-1,Ki)。
下面再讲一下S盒的变换过程。任取一S盒。见图:

在其输入b1,b2,b3,b4,b5,b6中,计算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再从Si表中查出x 行,y 列的值Sxy。将Sxy化为二进制,即得Si盒的输出。(S表如图所示)


至此,DES算法加密原理讲完了。在VC++6.0下的程序源代码为:

for(i=1;i<=64;i++)
m1[i]=m[ip[i-1]];//64位明文串输入,经过IP置换。

下面进行迭代。由于各次迭代的方法相同只是输入输出不同,因此只给出其中一次。以第八次为例://进行第八次迭代。首先进行S盒的运算,输入32位比特串。
for(i=1;i<=48;i++)//经过E变换扩充,由32位变为48位
RE1[i]=R7[E[i-1]];
for(i=1;i<=48;i++)//与K8按位作不进位加法运算
RE1[i]=RE1[i]+K8[i];
for(i=1;i<=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i<7;i++)//48位分成8组
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面经过S盒,得到8个数。S1,s2,s3,s4,s5,s6,s7,s8分别为S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i<8;i++)//8个数变换输出二进制
{
for(j=1;j<5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j<5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i<33;i++)//经过P变换
frk[i]=f[P[i-1]];//S盒运算完成
for(i=1;i<33;i++)//左右交换
L8[i]=R7[i];
for(i=1;i<33;i++)//R8为L7与f(R,K)进行不进位二进制加法运算结果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}

[ 原创文档 本文适合中级读者 已阅读21783次 ] 文档 代码 工具

DES算法及其在VC++6.0下的实现(下)
作者:航天医学工程研究所四室 朱彦军

在《DES算法及其在VC++6.0下的实现(上)》中主要介绍了DES算法的基本原理,下面让我们继续:

二.子密钥的生成
64比特的密钥生成16个48比特的子密钥。其生成过程见图:


子密钥生成过程具体解释如下:
64比特的密钥K,经过PC-1后,生成56比特的串。其下标如表所示:

PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

该比特串分为长度相等的比特串C0和D0。然后C0和D0分别循环左移1位,得到C1和D1。C1和D1合并起来生成C1D1。C1D1经过PC-2变换后即生成48比特的K1。K1的下标列表为:

PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2……依次类推直至生成子密钥K16。
注意:Lsi (I =1,2,….16)的数值是不同的。具体见下表:

迭代顺序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1


生成子密钥的VC程序源代码如下:

for(i=1;i<57;i++)//输入64位K,经过PC-1变为56位 k0[i]=k[PC_1[i-1]];

56位的K0,均分为28位的C0,D0。C0,D0生成K1和C1,D1。以下几次迭代方法相同,仅以生成K8为例。 for(i=1;i<27;i++)//循环左移两位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i<=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i<=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密钥k8

注意:生成的子密钥不同,所需循环左移的位数也不同。源程序中以生成子密钥 K8为例,所以循环左移了两位。但在编程中,生成不同的子密钥应以Lsi表为准。



三.解密

DES的解密过程和DES的加密过程完全类似,只不过将16圈的子密钥序列K1,K2……K16的顺序倒过来。即第一圈用第16个子密钥K16,第二圈用K15,其余类推。
第一圈:

加密后的结果

L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理类推:
得 L=R0, R=L0。
其程序源代码与加密相同。在此就不重写。

四.示例
例如:已知明文m=learning, 密钥 k=computer。
明文m的ASCII二进制表示:

m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111

密钥k的ASCII二进制表示:

k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010

明文m经过IP置换后,得:

11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000

等分为左右两段:

L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000

经过16次迭代后,所得结果为:

L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4=00111110101100010000101110000100 R4=11110111110101111111101000111110
L5=11110111110101111111101000111110 R5=10010110011001110100111111100101
L6=10010110011001110100111111100101 R6=11001011001010000101110110100111
L7=11001011001010000101110110100111 R7=01100011110011101000111011011001
L8=01100011110011101000111011011001 R8=01001011110100001111001000000100
L9=01001011110100001111001000000100 R9=00011101001101111010111011100001
L10=00011101001101111010111011100001 R10=11101110111110111111010100000101
L11=11101110111110111111010100000101 R11=01101101111011011110010111111000
L12=01101101111011011110010111111000 R12=11111101110011100111000110110111
L13=11111101110011100111000110110111 R13=11100111111001011010101000000100
L14=11100111111001011010101000000100 R14=00011110010010011011100001100001
L15=00011110010010011011100001100001 R15=01010000111001001101110110100011
L16=01010000111001001101110110100011 R16=01111101101010000100110001100001

其中,f函数的结果为:

f1=11001010001110011110100000000011 f2=00010111000111011100101101011111
f3=00001011100000000011000000100001 f4=11100000001101010100000010111001
f5=10101000110101100100010001100001 f6=00111100111111111010011110011001
f7=11110101101010011100000100111100 f8=10000000111110001010111110100011
f9=01111110111110010010000000111000 f10=10100101001010110000011100000001
f11=01110000110110100100101100011001 f12=00010011001101011000010010110010
f13=10001010000010000100111111111100 f14=11100011100001111100100111010110
f15=10110111000000010111011110100111 f16=01100011111000011111010000000000

16个子密钥为:

K1=11110000101111101110111011010000 K2=11100000101111101111011010010101
K3=11110100111111100111011000101000 K4=11100110111101110111001000011010
K5=11101110110101110111011100100110 K6=11101111110100110101101110001011
K7=00101111110100111111101111100110 K8=10111111010110011101101101010000
K9=00011111010110111101101101000100 K10=00111111011110011101110100001001
K11=00011111011011011100110101101000 K12=01011011011011011011110100001010
K13=11011101101011011010110110001111 K14=11010011101011101010111110000000
K15=11111001101111101010011011010011 K16=11110001101111100010111000000001

S盒中,16次运算时,每次的8 个结果为:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;

子密钥生成过程中,生成的数值为:

C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000

#define READFILESIZE 512
步骤:
1.从文件中读取READFILESIZE个字节的数据
2.,如果从文件中读出的数据少于READFILESIZE个,以0补足,然后根据用户指定的类型对这READFILESIZE个字节的数据进行操作.
3.判断文件是否结束,没有则执行步骤1
4.把加密后的文件实际长度添加到密文的末尾
5.结束
采用一次只从文件读取READFILESIZE个字节是在为了防止由于需要加密或解密的文件太大导致内存不够的情况出现。

随着计算机网络和计算机通讯技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。由于密码系统的各种性能主要由密码算法所决定,不同的算法决定了不同的密码体制,而不同的密码体制又有着不同的优缺点:有的密码算法高速简便,但加解密密钥相同,密钥管理困难;有的密码算法密钥管理方便安全,但计算开销大、处理速度慢。基于此,本文针对两种典型的密码算法DES和RSA的特点进行讨论分析,并提出一种以这两种密码体制为基础的混合密码系统,来实现优势互补。
1 密码系统简介
1.1 密码系统分类
密码系统从原理上可分为两大类,即单密钥系统和双密钥系统。单密钥系统又称为对称密码系统,其加密密钥和解密密钥或者相同,或者实质上相同,即易于从一个密钥得出另一个,如图1所示。双密钥系统又称为公开密钥密码系统,它有两个密钥,一个是公开的,用K1表示,谁都可以使用;另一个是私人密钥,用K2表示,只由采用此系统的人掌握。从公开的密钥推不出私人密钥,如图2所示。

1.2 两种密码系统分析
1.2.1 对称密码系统(单钥密码系统)
对称密码系统中加密和解密均采用同一把密钥,而且通信双方必须都要获得这把密钥。这就带来了一系列问题。首先,密钥本身的发送就存在着风险,如果在发送中丢失,接受方就不可能重新得到密文的内容;其次,多人通信时密钥的组合的数量会出现爆炸性的膨胀,N个人两两通信,需要N*(N-1)/2把密钥,增加了分发密钥的代价和难度;最后,由于通信双方必须事先统一密钥,才能发送保密的信息,这样,陌生人之间就无法发送密文了。
1.2.2 公开密钥密码系统(双钥密码系统)
公开密钥密码系统中,收信人生成两把数学上关联但又不同的公钥和私钥,私钥自己保存,把公钥公布出去,发信人使用收信人的公钥对通信文件进行加密,收信人收到密文后用私钥解密。公开密钥密码系统的优势在于,首先,用户可以把用于加密的钥匙公开地发给任何人,并且除了持有私有密钥的收信人之外,无人能解开密文;其次,用户可以把公开钥匙发表或刊登出来,使得陌生人之间可以互发保密的通信;最后,公开密钥密码系统提供了数字签字的公开鉴定系统,而这是对称密码系统不具备的。
1.3 典型算法
对称密码系统的算法有DES,AES,RC系列,DEA等,公开密钥密码系统的算法有RSA,Diffie-Hellman, Merkle-Hellman等。
2 DES算法
DES (Data Encryption Standard,数据加密标准)是一个分组加密算法,它以64 bit位(8 byte)为分组对数据加密,其中有8 bit奇偶校验,有效密钥长度为56 bit。64 位一组的明文从算法的一端输入,64 位的密文从另一端输出。DES算法的加密和解密用的是同一算法,它的安全性依赖于所用的密钥。DES 对64位的明文分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分,各32位长。然后进行16轮完全相同的运算,这些运算被称为函数f,在运算过程中数据与密钥结合。经过16轮后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个s盒将这48位替代成新的32位数据,再将其置换一次。这些运算构成了函数f。然后,通过另一个异或运算,函数f输出与左半部分结合,其结果即成为新的右半部分, 原来的右半部分成为新的左半部分。将该操作重复16次,实现DES的16轮运算。
3 RSA算法
RSA算法使用两个密钥,一个公共密钥,一个私有密钥。如用其中一个加密,则可用另一个解密。密钥长度从40到2048 bit可变。加密时把明文分成块,块的大小可变,但不能超过密钥的长度,RSA算法把每一块明文转化为与密钥长度相同的密文块。密钥越长,加密效果越好,但加密解密的开销也大,所以要在安全与性能之间折衷考虑,一般64位是较合适的。RSA算法利用了陷门单向函数的一种可逆模指数运算,描述如下:(1)选择两个大素数p和q;(2)计算乘积n=pq和φ(n)=(p-1)(q-1);(3)选择大于1小于φ(n)的随机整数e,使得
gcd(e,φ(n))=1;(4)计算d使得de=1modφ(n);(5)对每一个密钥k=(n,p,q,d,e),定义加密变换为Ek(x)=xemodn,解密变换为Dk(y)=ydmodn,这里x,y∈Zn;(6)以{e,n}为公开密钥,{p,q,d}为私有密钥。
4 基于DES和RSA的混合密码系统
4.1 概述
混合密码系统充分利用了公钥密码和对称密码算法的优点,克服其缺点,解决了每次传送更新密钥的问题。发送者自动生成对称密钥,用对称密钥按照DES算法加密发送的信息,将生成的密文连同用接受方的公钥按照RSA算法加密后的对称密钥一起传送出去。收信者用其密钥按照RSA算法解密被加密的密钥来得到对称密钥,并用它来按照DES算法解密密文。
4.2 具体实现步骤
(1)发信方选择对称密钥K(一般为64位,目前可以达到192位)
(2)发信方加密消息:对明文按64位分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分。然后进行16轮完全相同的运算,最后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个S盒将这48位替代成新的32位数据,再将其置换一次。然后通过另一个异或运算,输出结果与左半部分结合,其结果即成为新的右半部分,原来的右半部分成为新的左半部分。如图3所示。

(3)收信方产生两个足够大的强质数p、q,计算n=p×q和z=(p-1)×(q-1),然后再选取一个与z互素的奇数e,从这个e值找出另一个值d,使之满足e×d=1 mod (z)条件。以两组数(n,e) 和 (n,d)分别作为公钥和私钥。收信方将公钥对外公开,从而收信方可以利用收信方的公钥对 (1)中产生的对称密钥的每一位x进行加密变换Ek(x)=xemodn;
(4)发信方将步骤(2)和(3)中得到的消息的密文和对称密钥的密文一起发送给收信方;
(5)收信方用(3)中得到的私钥来对对称密钥的每一位y进行解密变换Dk(y)=ydmodn,从而得到(1)中的K;
(6)收信方用对称密钥K和DES算法的逆步骤来对消息进行解密,具体步骤和(2)中恰好相反,也是有16轮迭代。
(7)既可以由收信方保留对称密钥K来进行下一次数据通信,也可以由收信方产生新的对称密钥,从而使K作废。
4.3 两点说明
4.3.1 用公钥算法加密密钥
在混合密码系统中,公开密钥算法不用来加密消息,而用来加密密钥,这样做有两个理由:第一,公钥算法比对称算法慢,对称算法一般比公钥算法快一千倍。计算机在大约15年后运行公开密钥密码算法的速度才能比得上现在计算机运行对称密码的速度。并且,随着带宽需求的增加,比公开密钥密码处理更快的加密数据要求越来越多。第二,公开密钥密码系统对选择明文攻击是脆弱的。密码分析者只需要加密所有可能的明文,将得到的所有密文与要破解的密文比较,这样,虽然它不可能恢复解密密钥,但它能够确定当前密文所对应的明文。
4.3.2 安全性分析
如果攻击者无论得到多少密文,都没有足够的信息去恢复明文,那么该密码系统就是无条件安全的。在理论上,只有一次一密的系统才能真正实现这一点。而在本文所讨论的混合密码系统中,发信方每次可以自由选择对称密钥来加密消息,然后用公钥算法来加密对称密钥,即用户可以采用一次一密的方式来进行数据通信,达到上述的无条件安全。
5 小结
基于DES和RSA的混合密码系统结合了公钥密码体制易于密钥分配的特点和对称密码体制易于计算、速度快的特点,为信息的安全传输提供了良好的、快捷的途径,使数据传输的密文被破解的几率大大降低,从而对数据传输的安全性形成更有力的保障,并且发信方和收信方对密钥的操作自由度得到了很大的发挥。