PEG介导的原生质体转化

kuaidi.ping-jia.net  作者:佚名   更新日期:2024-08-27
怎样学习理工学科?

许多同学由于没有正确掌握学习方法,有的虽然知道其重要性但不得学习要领,有的则误入题海,茫茫然不知所措,导致学绩不如人意。因此在学习数学的时候,我们有必要学会如何掌握知识,掌握技能,培养能力,以及锻炼成良好的学习心理品质,把握好关键学习阶段,最终掌握学习方法进而形成综合学习的能力。 学习中主要注意的一些问题: 1、在看书的时候正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。 由于理工科是一大类知识的连贯性和逻辑性都很强的学科,正确掌握我们学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。 2、自我培养数学运算能力,养成良好的学习习惯。 每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是运用一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。 因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,这就是我们常说的既要知其然又要知其所以然,从而把握运算的方向、途径和程序,一步一步仔细完成,使得运算能力一步一步地得到提高。同学们请注意,如果你有上述类似跳步的现象应及时改正,否则,久而久知,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,结果这样就会错得越多。 3、重视知识的获取过程,培养抽象、概括分析、综合、推理证明能力。 老师上课在讲解公式、定理、概念时,一般都揭示它们的形成过程,而这个过程却又是同学们最容易忽视的,有的同学认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。 4.把握好学期初始阶段的学习。 学习贵在持之以恒,锲而不舍的精神,但同时我们注意到新学期初的学习很重要,它起到一个承上启下的重要作用。假期已经结束,新学期开始了,同学们又要投入到了新的学习生活。时间不算短的假期,同学们一定感到轻松了很多。刚开学,大家可能感到还不那么紧张,然而我们的学习却更需要从学期初抓起,抓紧期初学习很重要。 学期之初,所学内容少,作业量小,同学们常有一种轻松之感。然而此时正是我们学习的好时机。一方面知识前后是有联系的,孔子曾说:“温故而知新”,我们可以利用这段时间将以前所学相关内容温习一下,以便于更好地学习新知识。另一方面,基础稍微差一点的同学,也可以利用这段时间弥补过去学习上的不足之处,这种弥补对新知识的学习也是较为有益的。 学期之初,我们所学内容尽管少,但要真正全部消化并不容易。那我们就必须花时间去巩固,直至把所学内容全部理解为止。如此看来,尽管是学期之初,我们仍然松懈不得。 有一个良好的开端才会有一个良好的结果。 学业成绩的提高,学习方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下良好的学习习惯。 良好的学习习惯包括:听讲、阅读、思考、作业。 听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。 阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。 思考:学会思考,在问题解决之后再探求一些新的方法,学着从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。 作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。 总之,在学习的过程中,我们要认识到学习的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的学习习惯,以培养思考问题、分析问题和解决问题的能力。 !

麻烦采纳,谢谢!

理工 理工是一个广大的领域包含物理、化学、生物、工程、天文、数学及前面六大类的各种运用与组合。理工事实上是自然、科学、和科技的容合。在西方世界里,理工这个字并不存在;理工在英文解释里,是自然(Science)与科技(Technology)的结合。理工二字最早是1880年代,由当时的中国留学生从国外的Science和Technology翻译合成的。时至今日,但凡有人提起世界理工大学之最,人人皆推麻省理工学院。麻省之名蜚声海外,成为世界各地莘莘学子心向神往,趋之若鹜的科学圣殿。 [编辑] 理工领域包含 物理-研究大自然现象及规律的学问 化学-研究物质的性质、组成、结构和变化的科学 生物-研究有生命的个体 工程-应用科学和技术的原理来解决人类问题 天文-观察及解释天体的物质状况及事件为主的学科 数学-研究量、结构、变化以及空间模型的学科;被誉为“科学的语言”

此方法首先要获得去细胞壁的原生质体,可用胞壁降解酶除去芽管或菌丝的细胞壁。通常使用的是酶混合物,例如纤维素酶、蜗牛酶、溶壁酶等,这些胞壁降解酶混合使用通常会更好地发挥去壁作用,在原生质体准备过程中,要求渗透压稳定剂。1987年Penttila等第一次在里氏木霉(Trichoderma reesei)原生质体制备基础上利用PEG介导实现木霉的转化,以后的其他研究者的木霉PEG转化大多是在他的基础上进行改良而来,在原生质制备过程中成功使用山梨醇保持渗透压稳定,浓度为1.2M,MgSO4可以作为替代品。此外,有些真菌使用甘露醇或NaCl也是可行的(Fincham et al.,1989)。T.reesei使用1.0~1.2M的山梨醇可有效控制渗透压稳定性,后代再生率为90%。经过PEG转化,原生质体再生率从90%降至12%~35%。PEG转化技术的主要优势在于尽管不同物种的原生质体形成和传代是非常多样的,但该方法均可适用。一般来说,原生质体储存越久,转化效果越差(Penttila et al.,1987b),所以原生质体需要现用现制备。此外,原生质体常常不止一个细胞核,这需要做长时间净化处理以得到同核体。

PEG介导的原生质体转化法是通过PEG的介导作用将遗传因子转入受体细胞原生质体中的一种方法,原生质体的制备与再生是转化的关键,此外CaCl2也是不可或缺的成分。目前,多数丝状真菌的转化以原生质体作为感受态细胞,在一定浓度的CaCl2和PEG等条件下和需转化的外源DNA混合完成的。因此,PEG介导的原生质体转化法包括原生质体的制备和原生质体转化两个主要过程。

8.1.1.1 原生质体的制备与再生

原生质体制备的最大障碍就是细胞壁,木霉菌细胞壁的主要成分为多糖,其次为蛋白质、类脂。多糖主要有几丁质、纤维素、葡聚糖、甘露聚糖等。因此,目前主要通过使用纤维素酶、蜗牛酶或溶壁酶等酶法去除细胞壁。具体采用的酶种类、浓度等需要通过具体的实验来确定。影响原生质体制备的因素很多,不同的木霉有其较为适当的形成条件。主要考虑的因素有:①菌龄的选择。菌丝的菌龄对原生质体的产量影响很大,不同菌龄的菌丝在同样的条件下酶解所得到的结果不同,利用合适菌龄的菌丝所得的原生质体明显较多,这与许多霉菌的原生质体分离的情况相似,菌龄过长,菌丝细胞壁发生老化增厚,不易于释放原生质体,菌龄过短则菌丝体易破裂,释放原生质体数量较少,因此,需要针对不同的菌株生长发育情况具体确定合适的菌龄。②破壁酶系统的选择。适当的破壁酶组合是成功地释放原生质体的关键。由于真菌的细胞壁组成复杂,使用单一酶类处理一般效果不理想,所以,通常会采用多个酶的组合配制成复合酶液,并确定相应的酶解时间和酶解温度等相关条件。③渗透压稳定剂对原生质体释放的影响。形成原生质体后,细胞膜失去细胞壁的保护,容易破损,不易保存,而渗透压稳定剂可以维持原生质体细胞膜内外压力恒定和原生质体形状,使原生质体不易破裂且有助于后续试验的进行。因此,渗透压稳定剂是影响原生质体产量的关键因素之一。常用的渗透压稳定剂有山梨醇、葡萄糖、甘露醇、蔗糖、MgCl2、KCl、NaCl等,例如Penttila等(1987b)在制备T.reesei原生质体时使用山梨醇保持渗透压稳定,浓度为1.2M,浓度为1.2M的MgSO4也可作为替代的材料。此外,针对某些真菌使用甘露醇或NaCl也是可行的(Fincham et al.,1989)。针对木霉的原生质体制备有选用无机盐的,例如田媛等(2010)制备康宁木霉(T.koningii)原生质体时发现无机盐溶液有利于原生质体的释放,而糖醇类不利于原生质体释放。原因可能是无机盐能够促进酶的活性,使酶与细胞能够充分接触。渗透压缓冲液中NaCl最好,KCl次之。而赵乐辉等(2005)在制备木霉T21和T22原生质体时发现蔗糖和甘露醇最合适,所以具体选用什么试剂作为制备原生质体的渗透压稳定剂还需根据具体情况来定夺。

原生质体的再生是进行转化后筛选的关键步骤,每个再生后的原生质体可以成为一个无性生殖体,影响再生的因素很多,主要有:①酶浓度和酶解时间。酶浓度对原生质体再生影响很大,由于使用的破壁酶多数为复合酶,其中会含有对原生质体有害的酶类(例如过氧化物酶、核糖核酸酶等),这些酶必然会影响原生质体的活性。过高的酶浓度使细胞破壁太彻底导致原生质体的细胞膜破裂,使再生率降低。酶解时间对原生质体产量和再生有双重影响。酶解时间短,对原生质体活性影响较小,因而有利于再生,但是原生质体的产量相对低;而延长酶解时间,虽然可以提高原生质体产量,但对原生质体活性影响较大,因而原生质体的再生率明显降低。所以,酶解时间的选定要统筹考虑原生质体的产出率和再生率。②渗透压稳定剂的影响。有些无机盐有利于原生质体的产出,但再生时可能在平板周围形成高盐环境而不利于菌落的形成,而使用糖醇类的渗透压稳定剂由于其对原生质体具有保护作用,还可作为营养利于菌丝生长,所以可能比无机盐更有效。③不同再生培养基对原生质体再生有显著影响。例如黄玉茜等(2005)发现,将制备好的木霉菌T23原生质体分别在基础培养基、完全培养基、改良查氏培养基上再生,结果表明,在基础培养基上再生率最高,平均达到25.4%,其次为完全培养基,再生率平均为21.3%,改良查氏培养基的再生效果最差。

再生率=(高渗溶液稀释所长出的菌落数-用无菌水长出的菌落数)/加入原生质体数×100%

在液体再生培养基中可以观察到原生质体的再生方式,木霉的原生质体通常会在渗透压稳定剂的作用下,液泡吸水而膨大,在体内形成一个或多个大液泡,并向一端伸展,失去圆球形状,并形成不规则的突起,不规则的突起然后类似出芽状长出念珠状畸形萌发管,最后发育成正常菌丝。

8.1.1.2 原生质体转化

原生质体与外源DNA在包含CaC12的PEG缓冲液中混合,最后将原生质体涂布于再生培养基中选择转化子。其主要原理是PEG能使细胞膜之间或DNA与膜之间形成分子桥,促使细胞接触和粘连;或是通过引起表面电荷紊乱,干扰细胞间的识别,而有利于细胞间的融合或外源DNA的进入。一般认为,PEG与细胞膜内的水、蛋白质和糖类分子形成氢键,使得原生质体连在一起而发生凝聚,并由于Ca2+的存在而加强,这种细胞间凝聚能够促进DNA的吸收。PEG浓度过高或作用时间过长,易于使原生质脱水破裂,失去再生活性,从而使转化率下降。

为了筛选转化子,转化载体一般需要携带抗性标记基因,按基因编码产物的功能可将这些选择标记分为三大类,即营养缺陷型标记、药物抗性标记和功能产物标记:

(1)营养缺陷型标记:包括一些碳源、氮源和硫源的代谢基因,它们能与相应的营养缺陷型丝状真菌受体菌遗传互补,从而通过营养缺陷筛选出目标转化子,常见的营养缺陷筛选有编码精氨酸生物合成途径中鸟氨酸氨甲酞转移酶的argB+基因和编码尿嘧啶生物合成途径中的乳清苷-5’-磷酸脱羧酶的Pyr4+基因。

(2)药物抗性标记:目前常用的药物抗性标记有编码苯菌灵抗性的bml基因,编码寡霉素抗性的oliC基因;还有来自细菌的潮霉素抗性基因(hygB)、苯并咪唑类杀菌剂抗性基因 BenR、博来霉素抗性基因(ZeoR)、G418 抗性基因(NeoR)、抗硫胺素基因(ptrA)、腐草霉素抗性基因及氨基糖苷类,大环内酯类,金属糖肽类抗生素抗性基因等,其中,潮霉素抗性基因的应用最为广泛。

(3)功能标记:构巢曲霉(Aspergillus nidulans)amds基因编码乙酞胺酶,而黑曲霉菌及许多其他的丝状真菌不能合成此酶,因此,将这些丝状真菌涂布在以乙酞胺为唯一碳源或氮源的选择性培养基上,即可方便地筛选携带amds型质粒的转化子。1995年Thrane等通过PEG介导的原生质体转化方法将来源于大肠杆菌的β-葡萄糖醛酸苷酶(GUS)基因和绿色荧光蛋白(GFP)基因转入哈茨木霉(T.harzianum)T3中,木霉菌转化子也可在x-gal平板上呈现蓝色反应或在荧光显微镜下分生孢子梗和分生孢子被观察到绿色荧光的存在,可用于木霉菌的在植物上定殖和在土壤等环境中的分析检测研究。

大多数丝状真菌的转化载体在宿主菌中不能自主复制,而是同源或者异源整合到宿主菌的基因组中。重组效率依赖于多种因素,包括转化的方法和条件、转化的宿主菌、转化的DNA片段与宿主基因组的同源程度及同源序列的长度等。营养缺陷型标记有可能引导载体质粒整合染色体的同源部位,易于筛选,但作为受体的营养缺陷型的筛选比较困难,特别是对一些工业生产菌、病原菌和多倍体菌株几乎难以实现,而药物抗性标记和功能标记则避免了前者的缺点,但带来的环境生物安全问题值得探讨。即使不存在任何选择性压力,转化子在有丝分裂过程中会表现出高度的不稳定性,抗药性筛选容易出现阳性假转化子现象。大多数的丝状真菌转化实验都证明了这一点,尤其对粗糙脉袍菌的转化实验。转化子DNA丢失不稳定的原因可能有部分重复DNA的甲基化、DNA的被切割和DNA重排等。下面提供一种本实验室常用转化木霉方法,仅供参考,具体步骤如下:

(1)原生质制备:取1mL木霉分生孢子悬浮液(1×108孢子/mL)接种到PD中,28℃下振荡培养20h。用4层无菌纱布过滤收集菌丝体,无菌水冲洗5次,0.16M KCl冲洗至菌丝半透明。向菌丝中加入2mL浓度为10mg/mL的溶菌酶,混匀,30℃下放置3h后用4层纱布过滤,0.6M KCl冲洗。滤液在5000r/min下离心15min。获得的原生质体用STC[原生质体保存培养基,0.6M蔗糖、10mmTris-HCl(pH8.0)、10mmCaCl2]冲洗两遍,悬浮于STC中在4℃下保存。

(2)原生质体再生:先在培养皿底部铺上一薄层OcmBOTTOM培养基(1mol/L蔗糖的CM培养基;OcmTOP培养基:OCM中加入1%琼脂;OcmBottom培养基:OCM中加入1.5%琼脂),再将原生质体与冷却至40~45℃的再生培养基轻轻混合,倒入上述平板,黑暗培养4~5d,计再生菌落数。原生质体再生率计算:

原生质体再生率=再生培养基上生长的菌落数(个)∕涂布原生质体数量(个)×100%

(3)原生质体转化:将准备好的质粒5μg加入含有200μL原生质体的50mL离心管中混合均匀,室温下静置20min;加入1mL40%PTC[原生质体再生培养基,1×STC中含40%(W/V)PEG8000],0.22μm细菌过滤器过滤除菌到管中,轻轻混匀,室温下静置20min;加入5mL TB3(含50μg/mL 氨苄青霉素),室温、175r/min下摇床培养过夜。

(4)原生质体筛选:将培养过夜的原生质体在3500r/min下离心10min,弃上清液,用剩余大约5mL的残液悬浮沉淀;融化Bottom Agar培养基并冷却到65℃,转移10mL Bottom Agar培养基到含有已复生原生质体的50mL离心管中,加入氨苄青霉素到终浓度50μg/mL,混匀后快速倒入平板;25℃培养10h后,再倒上含有较高浓度潮霉素的Top Agar筛选培养基,25℃下培养2~3d后,挑取平板上的单个菌落,转接含有无抗培养基上培养传代,并经过PCR鉴定和southern blot鉴定确定转化子。



PEG介导的原生质体转化法是通过PEG的介导作用将遗传因子转入受体细胞原生质体中的一种方法,原生质体的制备与再生是转化的关键,此外CaCl2也是不可或缺的成分。

目前,多数丝状真菌的转化以原生质体作为感受态细胞,在一定浓度的CaCl2和PEG等条件下和需转化的外源DNA混合完成的。因此,PEG介导的原生质体转化法包括原生质体的制备和原生质体转化两个主要过程。

PEG介导法

为我国学者高国楠首创,是借助化合物PEG、磷酸钙及高pH条件下诱导原生质体提取外源DNA分子。PEG是细胞融合剂,可通过引起细胞膜表面电荷的紊乱,干扰细胞间的识别,从而有利于细胞间融合和外源DNA分子进入原生质体。碳酸钙可与DNA结合形成DNA-碳酸钙复合物而被原生质体摄入。

以上内容参考:百度百科-PEG介导法



  • 原生质体融合的方法
    答:原生质体融合的方法主要包括化学融合法、电融合法和激光诱导融合法。具体内容如下:1、化学融合法。最常用的是聚乙二醇(PEG)助融法,通过在无菌条件下混合双亲原生质体并加入PEG溶液来诱导融合,此方法融合效率高,适用范围广。2、电融合法。这种方法涉及将双亲原生质体悬浮混合后,置于微电极之间,施加交...
  • 生防工程菌的构建及生防机制研究
    答:2004年Lu等使用PEG介导的原生质转化将绿色荧光蛋白(EGFP)基因转化到T.atroviride p1中,并分别在不同的启动子下实现了成功表达,在此基础上研究T.atroviride p1与终极腐霉(P.ultimum)、立枯丝核菌等植物病原菌的相互作用,例如重寄生过程等。2012年Hohmann等通过对木霉菌剂LU592标记荧光蛋白,研究...
  • 植物体细胞杂交技术用什么诱导原生质体融合
    答:回答:物理方法:离心,振动,电激;化学方法:(PEG)聚乙二醇。特别注意:不可以用灭活的病毒诱导原生质体融合。还有什么不明白的可以继续追问,回答满意请采纳。
  • 求助,关于玉米原生质体转化后的浓度问题
    答:提取原生质体的方法用的就是sheen 的拟南芥提取的方案。材料用的是玉米黄花苗。材料的用量我并没有固定,用的比较多。导师说多一些好。碎片我提取的倒也有,不过原生质体浓度也不低。我做的时候原生质体提取的还算可以,就是用PEG转化完毕之后,视野里见到的原生质体不多。不知道是什么原因造成的。
  • 原生质体融合的聚乙二醇法是怎样做的?
    答:聚乙二醇法(PEG)为我国学者高国楠首创,是最成功的原生质体融合技术。PEG作为一种高分子化合物,由于PEG分子中醚键的存在使其分子末端带有微弱负电荷,能与水、蛋白质、糖等极性物质的正极形成氢键。当PEG分子足够长时,可作为邻近原生质表面之间的分子桥而使之粘连。PEG也能连接Casuperscript2+...
  • 转基因技术的发展历程
    答:问题一:转基因水稻的发展历程 水稻转基因技术在20世纪80年代才有所突破,人们通过原生质体体系将外源基因导入到水稻中,并发展了直接转化法、PEG介导法、电激法和脂质体介导法等水稻转化方法。20世纪90年代初,根癌农杆菌(Agrobacterium tumefaciens)转化水稻技术的建立使水稻转化成为一项常规的实用技术,目前...
  • 什么是DNA直接转化系统?
    答:DNA直接转化系统不依赖致瘤土壤杆菌载体或其他生物载体,将经处理的DNA通过物理的和化学的方法导入植物细胞,而实现遗传转化。1.化学法 化学诱导DNA直接转化是以植物原生质体为受体,借助于特定的化学物质诱导DNA直接进入植物细胞,主要有下述两种方法。(1)PEG介导法:PEG(polyethyleneglycol)即聚乙二醇,可...
  • 烟草叶盘转化法的优缺点
    答:该方法的优点是可实现烟草稳定转化,且转化效率高、实验周期短。我们可以利用此方法实现烟草叶片背面注射的瞬时转化,该方法可以用于基因的时空表达研究。另外,还提供基因枪和聚乙二醇介导的原生质体转化。叶盘转化法是2019年公布的植物学名词。是一项经过3~4周培养可获得转化的再生植株的技术。
  • 简述开展原生质体融合研究的意义
    答:一、目的与要求了解植物原生质体融合的基本原理及其过程。二、基本原理许多化学、物理学和生物学方法可诱导原生质体融合。现在被广泛采用并证明行之有效的融合方法是聚乙二烯(PEG)法、高Ca高pH法和电融合法。PEG作为一种高分子化合物,20~50%的浓度能对原生质体产生瞬间冲击效应,原生质体很快发生收缩...
  • 蔬菜的原生质体有哪些实验?
    答:迄今为止,辣椒原生质体融合还未见报道。今后的工作应当深入进行辣椒原生质体融合的研究,这将为选育新品种提供一种有效的方法。在葫芦科植物中,大多数学者的研究还停留在通过原生质体培养获得再生植株,原生质体融合方面的研究报道较少。李仁敬等(1994)将新疆甜瓜与西瓜原生质体通过PEG介导,在高Ca...